Spaces:
Sleeping
Sleeping
File size: 9,259 Bytes
0b00c74 d2794b1 ca86cf6 8b44d8d ca86cf6 b2cfd5f 464ec84 ca86cf6 b2cfd5f ca86cf6 2342c94 ca86cf6 464ec84 ca86cf6 464ec84 ca86cf6 73c438e b2cfd5f 73c438e ca86cf6 2d11242 ca86cf6 464ec84 ca86cf6 464ec84 ca86cf6 bd9d89a ca86cf6 4dfce87 e9d8edd ca86cf6 fbe5687 464ec84 2342c94 ca86cf6 bd9d89a 73c438e bd9d89a 73c438e ca86cf6 73c438e ca86cf6 bd9d89a ca86cf6 2880299 ca86cf6 7cfd7ed ca86cf6 8b44d8d 73c438e b2cfd5f 73c438e ca86cf6 8fe2131 ca86cf6 bd9d89a 125c82c bd9d89a 8b44d8d ca86cf6 8b44d8d ca86cf6 d2794b1 ca86cf6 2d11242 ca86cf6 74ae0b4 0b00c74 bd9d89a ca86cf6 bd9d89a ca86cf6 bd9d89a 73c438e bd9d89a 73c438e bd9d89a 73c438e bd9d89a 73c438e bd9d89a ca86cf6 73c438e 0b00c74 ca86cf6 0b00c74 ca86cf6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import gradio as gr
import os
import torch
import numpy as np
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
from transformers import AutoModelForImageClassification, BlipImageProcessor
from diffusers import DiffusionPipeline, AutoencoderKL
import torchvision.transforms as transforms
from huggingface_hub import hf_hub_download
from safetensors import safe_open
from copy import deepcopy
from collections import OrderedDict
import requests
import json
from PIL import Image, ImageEnhance
import base64
import io
import random
import math
class BZHStableSignatureDemo(object):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16").to("cuda")
# disable invisible-watermark
self.pipe.watermark = None
# save the original VAE
decoders = OrderedDict([("no watermark", self.pipe.vae)])
# load the patched VAEs
for name in ("weak", "medium", "strong", "extreme"):
vae = AutoencoderKL.from_pretrained(f"imatag/stable-signature-bzh-sdxl-vae-{name}", torch_dtype=torch.float16).to("cuda")
decoders[name] = vae
self.decoders = decoders
# load the proxy detector
self.detector_image_processor = BlipImageProcessor.from_pretrained("imatag/stable-signature-bzh-detector-resnet18")
self.detector_model = AutoModelForImageClassification.from_pretrained("imatag/stable-signature-bzh-detector-resnet18")
calibration = hf_hub_download("imatag/stable-signature-bzh-detector-resnet18", filename="calibration.safetensors")
with safe_open(calibration, framework="pt") as f:
self.calibration_logits = f.get_tensor("logits")
def generate(self, mode, seed, prompt):
generator = torch.Generator(device=device)
torch.manual_seed(seed)
# load the patched VAE
vae = self.decoders[mode]
self.pipe.vae = vae
output = self.pipe(prompt, num_inference_steps=4, guidance_scale=0.0, output_type="pil")
return output.images[0]
def attack(self, img, jpeg_compression, downscale, crop, saturation, brightness, contrast):
img = img.convert("RGB")
# attack
if downscale != 1:
size = img.size
size = (int(size[0] / downscale), int(size[1] / downscale))
img = img.resize(size, Image.Resampling.LANCZOS)
if crop != 0:
width, height = img.size
area = width * height
log_rmin = math.log(0.5)
log_rmax = math.log(2.0)
for _ in range(10):
target_area = area * (1 - crop)
aspect_ratio = math.exp(random.random() * (log_rmax - log_rmin) + log_rmin)
w = int(round(math.sqrt(target_area * aspect_ratio)))
h = int(round(math.sqrt(target_area / aspect_ratio)))
if 0 < w <= width and 0 < h <= height:
top = random.randint(0, height - h + 1)
left = random.randint(0, width - w + 1)
img = img.crop((left, top, left+w, top+h))
break
converter = ImageEnhance.Color(img)
img = converter.enhance(saturation)
converter = ImageEnhance.Brightness(img)
img = converter.enhance(brightness)
converter = ImageEnhance.Contrast(img)
img = converter.enhance(contrast)
# JPEG attack
mf = io.BytesIO()
img.save(mf, format='JPEG', quality=jpeg_compression)
filesize = mf.tell()
mf.seek(0)
img = Image.open(mf)
image_info = "resolution: %dx%d" % img.size
image_info += " JPEG file size: %d" % filesize
return img, image_info
def detect_api(self, img):
# send to detection API and apply JPEG compression attack
mf = io.BytesIO()
img.save(mf, format='PNG')
b64 = base64.b64encode(mf.getvalue())
data = {
'image': b64.decode('utf8')
}
headers = {}
api_key = os.getenv('BZH_API_KEY')
if api_key:
headers['x-api-key'] = api_key
response = requests.post('https://bzh.imatag.com/bzh/api/v1.0/detect',
json=data, headers=headers)
response.raise_for_status()
data = response.json()
pvalue = data['p-value']
return pvalue
def detect_proxy(self, img):
img = img.convert("RGB")
inputs = self.detector_image_processor(img, return_tensors="pt")
with torch.no_grad():
logit = self.detector_model(**inputs).logits[...,0]
pvalue = (1 + torch.searchsorted(self.calibration_logits, logit)) / self.calibration_logits.shape[0]
pvalue = pvalue.item()
return pvalue
def detect(self, img, detection_method):
if detection_method == "API":
pvalue = self.detect_api(img)
else:
pvalue = self.detect_proxy(img)
result = "No watermark detected."
rpv = 10**int(math.log10(pvalue))
if pvalue < 1e-3:
result = "Watermark detected with low confidence" # (p-value<%.0e)" % rpv
if pvalue < 1e-6:
result = "Watermark detected with high confidence" # (p-value<%.0e)" % rpv
score = min(int(-math.log10(pvalue)), 10)
#print("score = ", score)
return { result: score/10 }
def interface():
prompt = "sailing ship in storm by Rembrandt"
backend = BZHStableSignatureDemo()
decoders = list(backend.decoders.keys())
with gr.Blocks() as demo:
gr.Markdown("""# Watermarked SDXL-Turbo demo
This demo brought to you by [IMATAG](https://www.imatag.com/) presents watermarking of images generated via [StableDiffusion XL Turbo](https://huggingface.co/stabilityai/sdxl-turbo).
Using the method presented in [StableSignature](https://ai.meta.com/blog/stable-signature-watermarking-generative-ai/),
the VAE decoder of StableDiffusion is fine-tuned to produce images including a specific invisible watermark. We combined
this method with a demo version of [IMATAG](https://www.imatag.com/)'s in-house decoder. The watermarking system operates in zero-bit mode for improved robustness.""")
gr.Markdown("""## 1. Generate
Select a watermarking strength and generate images with StableDiffusion-XL Turbo from prompt and seed as usual.""")
with gr.Row():
inp = gr.Textbox(label="Prompt", value=prompt)
seed = gr.Number(label="Seed", precision=0)
mode = gr.Dropdown(choices=decoders, label="Watermark strength", value="medium")
with gr.Row():
btn1 = gr.Button("Generate")
with gr.Row():
watermarked_image = gr.Image(type="pil", width=512, height=512, sources=[], interactive=False)
gr.Markdown("""## 2. Edit
With these controls you may alter the generated image before detection. You may also upload your own edited image instead.""")
with gr.Row():
with gr.Column():
with gr.Row():
downscale = gr.Slider(1, 3, value=1, step=0.1, label="Downscale ratio")
crop = gr.Slider(0, 0.9, value=0, step=0.01, label="Random crop ratio")
with gr.Row():
brightness = gr.Slider(0, 2, value=1, step=0.1, label="Brightness")
contrast = gr.Slider(0, 2, value=1, step=0.1, label="Contrast")
with gr.Row():
saturation = gr.Slider(0, 2, value=1, step=0.1, label="Color saturation")
jpeg_compression = gr.Slider(value=100, step=5, label="JPEG quality")
btn2 = gr.Button("Edit")
with gr.Row():
attacked_image = gr.Image(type="pil", width=512, sources=['upload', 'clipboard'])
with gr.Row():
image_info_label = gr.Label(label="Image info")
gr.Markdown("""## 3. Detect
Detect the watermark on the altered image. Watermark may not be detected if the image is altered too strongly.
You may choose to detect with our fast [proxy model](https://huggingface.co/imatag/stable-signature-bzh-detector-resnet18), or via API for improved robustness.
""")
with gr.Row():
detection_method = gr.Dropdown(choices=["proxy model", "API"], label="Detection method", value="proxy model")
btn3 = gr.Button("Detect")
with gr.Row():
detection_label = gr.Label(label="Detection info")
btn1.click(fn=backend.generate, inputs=[mode, seed, inp], outputs=[watermarked_image], api_name="generate")
btn2.click(fn=backend.attack, inputs=[watermarked_image, jpeg_compression, downscale, crop, saturation, brightness, contrast], outputs=[attacked_image, image_info_label], api_name="attack")
btn3.click(fn=backend.detect, inputs=[attacked_image, detection_method], outputs=[detection_label], api_name="detect")
return demo
if __name__ == '__main__':
demo = interface()
demo.launch()
|