ShakespeareGPT / model.py
Saif Rehman Nasir
Add Streaming output logic
dc6fd47
import torch
import torch.nn as nn
from torch.nn import functional as F
with open('data/input.txt', 'r', encoding='utf-8') as f:
text = f.read()
chars = sorted(list(set(text)))
vocab_size = len(chars)
stoi = { ch:i for i,ch in enumerate(chars) }
itos = { i:ch for i,ch in enumerate(chars) }
#encoder and decoder for characters
# can be replaced by a tokenizer like TikToken
encode = lambda s: [stoi[c] for c in s]
decode = lambda l: ''.join([itos[i] for i in l])
# encode input data as torch tensors
data = torch.tensor(encode(text), dtype = torch.long)
#split data into train and validation pairs
n = int(0.9*len(data))
train_data = data[:n]
test_data = data[n:]
# create mini batches for multiple chunks of text that are stacked up in a single tensor
# for parallel processing of data
torch.manual_seed(1337)
batch_size = 4 # how many sequences processed in parallel
block_size = 8 # maximum context length for predictions
def get_batch(split):
data= train_data if split == 'train' else test_data
ix = torch.randint(len(data) - block_size, (batch_size,))
# take 1d tensors as a row
x = torch.stack([data[i:i+block_size] for i in ix])
y = torch.stack([data[i+1:i+block_size+1] for i in ix])
return x,y
###### Hyperparameters ########
batch_size = 64
block_size = 256
max_iters = 5000
eval_interval = 300
learning_rate = 3e-4
eval_iters = 200
device = 'cuda' if torch.cuda.is_available() else 'cpu'
n_embed = 384
n_head = 6
n_layer =6
dropout = 0.2
###### Hyperparameters ########
@torch.no_grad()
def estimate_loss(model):
out = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
class Head(nn.Module):
def __init__(self, head_size):
super().__init__()
self.key = nn.Linear(n_embed, head_size, bias = False)
self.query = nn.Linear(n_embed, head_size, bias = False)
self.value = nn.Linear(n_embed, head_size, bias = False)
self.register_buffer('tril', torch.tril(torch.ones(block_size,block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self,x):
B,T,C = x.shape
k = self.key(x) # (B,T,C)
q = self.query(x) # (B,T,C)
# perform scaled attention
wei = q @ k.transpose(-2,-1) * C**(-0.5) # (B,T,C) @ (B,C,T) -> (B,T,T)
wei = wei.masked_fill(self.tril[:T,:T] ==0, float('-inf')) # (B,T,T)
wei = F.softmax(wei,dim=-1)
wei = self.dropout(wei)
v = self.value(x)
out = wei @ v
return out
class MultiHeadAttention(nn.Module):
def __init__ (self, num_heads, head_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = nn.Linear(num_heads * head_size, n_embed)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.dropout(self.proj(out))
return out
class FeedForward(nn.Module):
""" a simple linear layer followed by a non-linearity """
def __init__(self, n_embed):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embed, 4 * n_embed),
nn.ReLU(), # for residual connections i guess
nn.Linear(4 * n_embed, n_embed),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
""" Transformer block: communication followed by computation """
def __init__(self, n_embed, n_head):
super().__init__()
head_size = n_embed // n_head
self.sa = MultiHeadAttention(n_head, head_size)
self.ffwd = FeedForward(n_embed)
# makes it unit gaussian at initiation
self.ln1 = nn.LayerNorm(n_embed)
self.ln2 = nn.LayerNorm(n_embed)
def forward(self, x):
# residual connections
x = x + self.sa(self.ln1(x))
x= x + self.ffwd(self.ln2(x))
return x
class BigramLM(nn.Module):
def __init__(self):
super().__init__()
self.token_embedding_table = nn.Embedding(vocab_size, n_embed)
self.position_embedding_table = nn.Embedding(block_size, n_embed)
self.blocks = nn.Sequential(*[Block(n_embed, n_head = n_head) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_embed)
self.lm_head = nn.Linear(n_embed, vocab_size)
def forward(self, idx, targets = None):
B,T = idx.shape
idx = idx.cuda() if torch.cuda.is_available() else idx
tok_emb = self.token_embedding_table(idx)
pos_emb = self.position_embedding_table(torch.arange(T,device = device))
x = tok_emb + pos_emb
x= self.blocks(x)
x = self.ln_f(x)
logits = self.lm_head(x)
if targets is None:
loss = None
else:
B,T,C = logits.shape
logits = logits.view(B*T, C)
logits = logits.cuda() if torch.cuda.is_available() else logits
targets = targets.view(B*T)
targets = targets.cuda() if torch.cuda.is_available() else targets
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens, temperature=1.0):
for _ in range(max_new_tokens):
# crop idx so that positional embedding doesnt run out of scope
idx_cond = idx[:, -block_size:]
# get predictions
logits, loss = self(idx_cond)
# pick the last time step
logits = logits[:,-1,:] / temperature
# apply softmax to get probabilities
probs = F.softmax(logits,dim=-1)
# sample from the distribution (pick the best)
idx_next = torch.multinomial(probs, num_samples=1)
# GPT like output
yield decode(idx_next[0].tolist())
# append sampled index to running sequence
idx = torch.cat((idx, idx_next), dim=1)
yield decode(idx_next[0].tolist())
def train():
model = BigramLM()
m = model.to(device)
# create a PyTorch optimizer
optimizer = torch.optim.AdamW(model.parameters(),lr=1e-3)
for iter in range(max_iters):
if iter % eval_interval == 0:
losses = estimate_loss(model)
print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
xb, yb = get_batch('train')
logits, loss = model(xb,yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
torch.save(model, 'saved_model.pth')
if __name__ == "__main__":
train()