File size: 9,356 Bytes
b940652
 
 
 
 
 
 
 
ac65f38
b940652
 
 
ac65f38
b940652
 
 
ac65f38
 
 
 
b940652
 
 
 
 
 
 
 
 
 
 
ac65f38
 
 
b940652
ac65f38
 
b940652
 
 
ac65f38
 
 
 
b940652
 
ac65f38
 
 
 
 
b940652
ac65f38
 
b940652
ac65f38
b940652
ac65f38
b940652
 
 
ac65f38
b940652
 
 
 
 
 
ac65f38
 
b940652
 
 
 
efe30e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b940652
ac65f38
b940652
 
 
 
ac65f38
 
 
b940652
ac65f38
 
b940652
 
efe30e8
ac65f38
 
b940652
ac65f38
 
 
b940652
 
efe30e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b940652
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import streamlit as st
import pandas as pd
import plotly.express as px

def load_and_preprocess_data(file_path):
    # Read the data
    df = pd.read_csv(file_path)
    
    # Basic preprocessing
    df = df.drop(['X', 'Y'], axis=1)
    df.dropna(subset=['Incidentid', 'DateTime', 'Year', 'Latitude', 'Longitude'], inplace=True)
    
    # Fill missing values
    numeric = ['Age_Drv1', 'Age_Drv2']
    for col in numeric:
        df[col].fillna(df[col].median(), inplace=True)
        
    categorical = ['Gender_Drv1', 'Violation1_Drv1', 'AlcoholUse_Drv1', 'DrugUse_Drv1',
                  'Gender_Drv2', 'Violation1_Drv2', 'AlcoholUse_Drv2', 'DrugUse_Drv2',
                  'Unittype_Two', 'Traveldirection_Two', 'Unitaction_Two', 'CrossStreet']
    for col in categorical:
        df[col].fillna('Unknown', inplace=True)
    
    # Remove invalid ages
    df = df[
        (df['Age_Drv1'] <= 90) & 
        (df['Age_Drv2'] <= 90) & 
        (df['Age_Drv1'] >= 16) & 
        (df['Age_Drv2'] >= 16)
    ]
    
    # Create age groups
    bins = [15, 25, 35, 45, 55, 65, 90]
    labels = ['16-25', '26-35', '36-45', '46-55', '56-65', '65+']
    
    df['Age_Group_Drv1'] = pd.cut(df['Age_Drv1'], bins=bins, labels=labels)
    df['Age_Group_Drv2'] = pd.cut(df['Age_Drv2'], bins=bins, labels=labels)
    
    return df

def create_severity_violation_chart(df, age_group=None):
    # Apply age group filter if selected
    if age_group != 'All Ages':
        df = df[(df['Age_Group_Drv1'] == age_group) | (df['Age_Group_Drv2'] == age_group)]
    
    # Combine violations from both drivers
    violations_1 = df.groupby(['Violation1_Drv1', 'Injuryseverity']).size().reset_index(name='count')
    violations_2 = df.groupby(['Violation1_Drv2', 'Injuryseverity']).size().reset_index(name='count')
    
    violations_1.columns = ['Violation', 'Severity', 'count']
    violations_2.columns = ['Violation', 'Severity', 'count']
    
    violations = pd.concat([violations_1, violations_2])
    violations = violations.groupby(['Violation', 'Severity'])['count'].sum().reset_index()
    
    # Create visualization
    fig = px.bar(
        violations,
        x='Violation',
        y='count',
        color='Severity',
        title=f'Crash Severity Distribution by Violation Type - {age_group}',
        labels={'count': 'Number of Incidents', 'Violation': 'Violation Type'},
        height=600
    )
    
    fig.update_layout(
        xaxis_tickangle=-45,
        legend_title='Severity Level',
        barmode='stack'
    )
    
    return fig

def get_top_violations(df, age_group):
    if age_group == 'All Ages':
        violations = pd.concat([
            df['Violation1_Drv1'].value_counts(),
            df['Violation1_Drv2'].value_counts()
        ]).groupby(level=0).sum()
    else:
        filtered_df = df[
            (df['Age_Group_Drv1'] == age_group) | 
            (df['Age_Group_Drv2'] == age_group)
        ]
        violations = pd.concat([
            filtered_df['Violation1_Drv1'].value_counts(),
            filtered_df['Violation1_Drv2'].value_counts()
        ]).groupby(level=0).sum()
    
    # Convert to DataFrame and format
    violations_df = violations.reset_index()
    violations_df.columns = ['Violation Type', 'Count']
    violations_df['Percentage'] = (violations_df['Count'] / violations_df['Count'].sum() * 100).round(2)
    violations_df['Percentage'] = violations_df['Percentage'].map('{:.2f}%'.format)
    
    return violations_df.head()

def main():
    st.title('Traffic Crash Analysis')
    
    # Load data
    df = load_and_preprocess_data('1.08_Crash_Data_Report_(detail).csv')
    
    # Create simple dropdown for age groups
    age_groups = ['All Ages', '16-25', '26-35', '36-45', '46-55', '56-65', '65+']
    selected_age = st.selectbox('Select Age Group:', age_groups)
    
    # Create and display chart
    fig = create_severity_violation_chart(df, selected_age)
    st.plotly_chart(fig, use_container_width=True)
    
    # Display statistics
    if selected_age == 'All Ages':
        total_incidents = len(df)
    else:
        total_incidents = len(df[
            (df['Age_Group_Drv1'] == selected_age) | 
            (df['Age_Group_Drv2'] == selected_age)
        ])
    
    # Create two columns for statistics
    col1, col2 = st.columns(2)
    
    with col1:
        st.markdown(f"### Total Incidents")
        st.markdown(f"**{total_incidents:,}** incidents for {selected_age}")
    
    # Display top violations table
    with col2:
        st.markdown("### Top Violations")
        top_violations = get_top_violations(df, selected_age)
        st.table(top_violations)

if __name__ == "__main__":
    main()import streamlit as st
import pandas as pd
import plotly.express as px

def load_and_preprocess_data(file_path):
    # Read the data
    df = pd.read_csv(file_path)
    
    # Basic preprocessing
    df = df.drop(['X', 'Y'], axis=1)
    df.dropna(subset=['Incidentid', 'DateTime', 'Year', 'Latitude', 'Longitude'], inplace=True)
    
    # Fill missing values
    numeric = ['Age_Drv1', 'Age_Drv2']
    for col in numeric:
        df[col].fillna(df[col].median(), inplace=True)
        
    categorical = ['Gender_Drv1', 'Violation1_Drv1', 'AlcoholUse_Drv1', 'DrugUse_Drv1',
                  'Gender_Drv2', 'Violation1_Drv2', 'AlcoholUse_Drv2', 'DrugUse_Drv2',
                  'Unittype_Two', 'Traveldirection_Two', 'Unitaction_Two', 'CrossStreet']
    for col in categorical:
        df[col].fillna('Unknown', inplace=True)
    
    # Remove invalid ages
    df = df[
        (df['Age_Drv1'] <= 90) & 
        (df['Age_Drv2'] <= 90) & 
        (df['Age_Drv1'] >= 16) & 
        (df['Age_Drv2'] >= 16)
    ]
    
    # Create age groups
    bins = [15, 25, 35, 45, 55, 65, 90]
    labels = ['16-25', '26-35', '36-45', '46-55', '56-65', '65+']
    
    df['Age_Group_Drv1'] = pd.cut(df['Age_Drv1'], bins=bins, labels=labels)
    df['Age_Group_Drv2'] = pd.cut(df['Age_Drv2'], bins=bins, labels=labels)
    
    return df

def create_severity_violation_chart(df, age_group=None):
    # Apply age group filter if selected
    if age_group != 'All Ages':
        df = df[(df['Age_Group_Drv1'] == age_group) | (df['Age_Group_Drv2'] == age_group)]
    
    # Combine violations from both drivers
    violations_1 = df.groupby(['Violation1_Drv1', 'Injuryseverity']).size().reset_index(name='count')
    violations_2 = df.groupby(['Violation1_Drv2', 'Injuryseverity']).size().reset_index(name='count')
    
    violations_1.columns = ['Violation', 'Severity', 'count']
    violations_2.columns = ['Violation', 'Severity', 'count']
    
    violations = pd.concat([violations_1, violations_2])
    violations = violations.groupby(['Violation', 'Severity'])['count'].sum().reset_index()
    
    # Create visualization
    fig = px.bar(
        violations,
        x='Violation',
        y='count',
        color='Severity',
        title=f'Crash Severity Distribution by Violation Type - {age_group}',
        labels={'count': 'Number of Incidents', 'Violation': 'Violation Type'},
        height=600
    )
    
    fig.update_layout(
        xaxis_tickangle=-45,
        legend_title='Severity Level',
        barmode='stack'
    )
    
    return fig

def get_top_violations(df, age_group):
    if age_group == 'All Ages':
        violations = pd.concat([
            df['Violation1_Drv1'].value_counts(),
            df['Violation1_Drv2'].value_counts()
        ]).groupby(level=0).sum()
    else:
        filtered_df = df[
            (df['Age_Group_Drv1'] == age_group) | 
            (df['Age_Group_Drv2'] == age_group)
        ]
        violations = pd.concat([
            filtered_df['Violation1_Drv1'].value_counts(),
            filtered_df['Violation1_Drv2'].value_counts()
        ]).groupby(level=0).sum()
    
    # Convert to DataFrame and format
    violations_df = violations.reset_index()
    violations_df.columns = ['Violation Type', 'Count']
    violations_df['Percentage'] = (violations_df['Count'] / violations_df['Count'].sum() * 100).round(2)
    violations_df['Percentage'] = violations_df['Percentage'].map('{:.2f}%'.format)
    
    return violations_df.head()

def main():
    st.title('Traffic Crash Analysis')
    
    # Load data
    df = load_and_preprocess_data('1.08_Crash_Data_Report_(detail).csv')
    
    # Create simple dropdown for age groups
    age_groups = ['All Ages', '16-25', '26-35', '36-45', '46-55', '56-65', '65+']
    selected_age = st.selectbox('Select Age Group:', age_groups)
    
    # Create and display chart
    fig = create_severity_violation_chart(df, selected_age)
    st.plotly_chart(fig, use_container_width=True)
    
    # Display statistics
    if selected_age == 'All Ages':
        total_incidents = len(df)
    else:
        total_incidents = len(df[
            (df['Age_Group_Drv1'] == selected_age) | 
            (df['Age_Group_Drv2'] == selected_age)
        ])
    
    # Create two columns for statistics
    col1, col2 = st.columns(2)
    
    with col1:
        st.markdown(f"### Total Incidents")
        st.markdown(f"**{total_incidents:,}** incidents for {selected_age}")
    
    # Display top violations table
    with col2:
        st.markdown("### Top Violations")
        top_violations = get_top_violations(df, selected_age)
        st.table(top_violations)

if __name__ == "__main__":
    main()