File size: 1,159 Bytes
7cc87ca
b62a5d7
82ea2ae
5a2fb73
bf7acc6
cd7e83a
b62a5d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import gradio as gr
import random
from transformers import pipeline



# Load the text generation pipeline with your fine-tuned model
generator = pipeline('text-generation', model='isitcoding/gpt2_120_finetuned')

# Function to generate responses using the text generation model
def respond(message, chat_history):
    # Generate a response from the model
    response = generator(message, max_length=1028, num_return_sequences=3)[0]['generated_text']
    # Append the user message and model response to chat history
    chat_history.append(("User", message))
    chat_history.append(("Bot", response))
    return chat_history

# Create a Gradio interface using Blocks
with gr.Blocks() as demo:
    # Add a Chatbot component
    chatbot = gr.Chatbot()
    # Add a textbox for user input
    msg = gr.Textbox(label="Enter your message")
    # Add a button to clear the chat
    clear = gr.Button("Clear")

    # Define what happens when the user submits a message
    msg.submit(respond, [msg, chatbot], chatbot)
    # Define what happens when the clear button is pressed
    clear.click(lambda: [], None, chatbot)

# Launch the Gradio interface
demo.launch()