syllables_matching_experiment / beat_analysis.py
jacob-c's picture
ss
2ef1fb1
import librosa
import numpy as np
import pronouncing
import re
from functools import lru_cache
import string
from nltk.corpus import cmudict
import nltk
from scipy import signal
try:
nltk.data.find('corpora/cmudict')
except LookupError:
nltk.download('cmudict')
class BeatAnalyzer:
def __init__(self):
# Mapping for standard stress patterns by time signature
# Simplified to only include 4/4, 3/4, and 6/8
self.stress_patterns = {
# Format: Strong (1.0), Medium (0.5), Weak (0.0)
"4/4": [1.0, 0.0, 0.5, 0.0], # Strong, weak, medium, weak
"3/4": [1.0, 0.0, 0.0], # Strong, weak, weak
"6/8": [1.0, 0.0, 0.0, 0.5, 0.0, 0.0] # Strong, weak, weak, medium, weak, weak
}
self.cmudict = None
try:
self.cmudict = cmudict.dict()
except:
pass # Fall back to rule-based counting if cmudict is not available
# Genre-specific syllable-to-beat ratio guidelines
self.genre_syllable_ratios = {
# Supported genres with strong syllable-to-beat patterns
'pop': (0.5, 1.0, 1.5), # Pop - significantly reduced range
'rock': (0.5, 0.9, 1.3), # Rock - reduced for brevity
'country': (0.6, 0.9, 1.2), # Country - simpler syllable patterns
'disco': (0.7, 1.0, 1.3), # Disco - tightened range
'metal': (0.6, 1.0, 1.3), # Metal - reduced upper limit
# Other genres (analysis only, no lyrics generation)
'hiphop': (1.8, 2.5, 3.5), # Hip hop often has many syllables per beat
'rap': (2.0, 3.0, 4.0), # Rap often has very high syllable counts
'folk': (0.8, 1.0, 1.3), # Folk often has close to 1:1 ratio
'jazz': (0.7, 1.0, 1.5), # Jazz can be very flexible
'reggae': (0.7, 1.0, 1.3), # Reggae often emphasizes specific beats
'soul': (0.8, 1.2, 1.6), # Soul music tends to be expressive
'r&b': (1.0, 1.5, 2.0), # R&B can have melisma
'electronic': (0.7, 1.0, 1.5), # Electronic music varies widely
'classical': (0.7, 1.0, 1.4), # Classical can vary by subgenre
'blues': (0.6, 0.8, 1.2), # Blues often extends syllables
'default': (0.6, 1.0, 1.3) # Default for unknown genres - more conservative
}
# List of genres supported for lyrics generation
# These genres have the most predictable and consistent syllable-to-beat relationships,
# making them ideal for our beat-matching algorithm
self.supported_genres = ['pop', 'rock', 'country', 'disco', 'metal']
# Common time signatures and their beat patterns with weights for prior probability
# Simplified to only include 4/4, 3/4, and 6/8
self.common_time_signatures = {
"4/4": {"beats_per_bar": 4, "beat_pattern": [1.0, 0.2, 0.5, 0.2], "weight": 0.55},
"3/4": {"beats_per_bar": 3, "beat_pattern": [1.0, 0.2, 0.3], "weight": 0.30},
"6/8": {"beats_per_bar": 6, "beat_pattern": [1.0, 0.2, 0.3, 0.8, 0.2, 0.3], "weight": 0.15}
}
# Add common accent patterns for different time signatures
self.accent_patterns = {
"4/4": [[1, 0, 0, 0], [1, 0, 2, 0], [1, 0, 2, 0, 3, 0, 2, 0]],
"3/4": [[1, 0, 0], [1, 0, 2]],
"6/8": [[1, 0, 0, 2, 0, 0], [1, 0, 0, 2, 0, 3]]
}
# Expected rhythm density (relative note density per beat) for different time signatures
self.rhythm_density = {
"4/4": [1.0, 0.7, 0.8, 0.6],
"3/4": [1.0, 0.6, 0.7],
"6/8": [1.0, 0.5, 0.4, 0.8, 0.5, 0.4]
}
@lru_cache(maxsize=128)
def count_syllables(self, word):
"""Count syllables in a word using CMU dictionary if available, otherwise use rule-based method."""
word = word.lower().strip()
word = re.sub(r'[^a-z]', '', word) # Remove non-alphabetic characters
if not word:
return 0
# Try using CMUDict first if available
if self.cmudict and word in self.cmudict:
return max([len(list(y for y in x if y[-1].isdigit())) for x in self.cmudict[word]])
# Rule-based syllable counting as fallback
# Modified version from NLTK's implementation
vowels = "aeiouy"
double_vowels = ['aa', 'ae', 'ai', 'ao', 'au', 'ay', 'ea', 'ee', 'ei', 'eo', 'eu', 'ey', 'ia', 'ie', 'ii', 'io', 'iu', 'oa', 'oe', 'oi', 'oo', 'ou', 'oy', 'ua', 'ue', 'ui', 'uo', 'uy']
prev_was_vowel = False
count = 0
final_e = False
if word.endswith('e') and not word.endswith('le'):
final_e = True
for i, char in enumerate(word):
if char in vowels:
# Check if current char and previous char form a dipthong
if prev_was_vowel and i > 0 and (word[i-1:i+1] in double_vowels):
prev_was_vowel = True
continue
if not prev_was_vowel:
count += 1
prev_was_vowel = True
else:
prev_was_vowel = False
# Handle edge cases
if word.endswith('le') and len(word) > 2 and word[-3] not in vowels:
count += 1
elif final_e:
count = max(count-1, 1) # Remove last 'e', but ensure at least 1 syllable
elif word.endswith('y') and not prev_was_vowel:
count += 1
# Ensure at least one syllable
return max(count, 1)
def detect_time_signature(self, audio_path, sr=22050):
"""
Advanced multi-method approach to time signature detection
Args:
audio_path: Path to audio file
sr: Sample rate
Returns:
dict with detected time signature and confidence
"""
# Load audio
y, sr = librosa.load(audio_path, sr=sr)
# 1. Compute onset envelope and beat positions
onset_env = librosa.onset.onset_strength(y=y, sr=sr, hop_length=512)
# Get tempo and beat frames
tempo, beat_frames = librosa.beat.beat_track(onset_envelope=onset_env, sr=sr)
beat_times = librosa.frames_to_time(beat_frames, sr=sr)
# Return default if not enough beats detected
if len(beat_times) < 8:
return {"time_signature": "4/4", "confidence": 0.5}
# 2. Extract beat strengths and normalize
beat_strengths = self._get_beat_strengths(y, sr, beat_times, onset_env)
# 3. Compute various time signature features using different methods
results = {}
# Method 1: Beat pattern autocorrelation
autocorr_result = self._detect_by_autocorrelation(onset_env, sr)
results["autocorrelation"] = autocorr_result
# Method 2: Beat strength pattern matching
pattern_result = self._detect_by_pattern_matching(beat_strengths)
results["pattern_matching"] = pattern_result
# Method 3: Spectral rhythmic analysis
spectral_result = self._detect_by_spectral_analysis(onset_env, sr)
results["spectral"] = spectral_result
# Method 4: Note density analysis
density_result = self._detect_by_note_density(y, sr, beat_times)
results["note_density"] = density_result
# Method 5: Tempo-based estimation
tempo_result = self._estimate_from_tempo(tempo)
results["tempo_based"] = tempo_result
# 4. Combine results with weighted voting
final_result = self._combine_detection_results(results, tempo)
return final_result
def _get_beat_strengths(self, y, sr, beat_times, onset_env):
"""Extract normalized strengths at beat positions"""
# Convert beat times to frames
beat_frames = librosa.time_to_frames(beat_times, sr=sr, hop_length=512)
beat_frames = [min(f, len(onset_env)-1) for f in beat_frames]
# Get beat strengths from onset envelope
beat_strengths = np.array([onset_env[f] for f in beat_frames])
# Also look at energy and spectral flux at beat positions
hop_length = 512
frame_length = 2048
# Get energy at each beat
energy = librosa.feature.rms(y=y, frame_length=frame_length, hop_length=hop_length)[0]
beat_energy = np.array([energy[min(f, len(energy)-1)] for f in beat_frames])
# Combine onset strength with energy (weighted average)
beat_strengths = 0.7 * beat_strengths + 0.3 * beat_energy
# Normalize
if np.max(beat_strengths) > 0:
beat_strengths = beat_strengths / np.max(beat_strengths)
return beat_strengths
def _detect_by_autocorrelation(self, onset_env, sr):
"""Detect meter using autocorrelation of onset strength"""
# Calculate autocorrelation of onset envelope
hop_length = 512
ac = librosa.autocorrelate(onset_env, max_size=4 * sr // hop_length)
ac = librosa.util.normalize(ac)
# Find significant peaks in autocorrelation
peaks = signal.find_peaks(ac, height=0.2, distance=sr//(8*hop_length))[0]
if len(peaks) < 2:
return {"time_signature": "4/4", "confidence": 0.4}
# Analyze peak intervals in terms of beats
peak_intervals = np.diff(peaks)
# Convert peaks to time
peak_times = peaks * hop_length / sr
# Analyze for common time signature patterns
time_sig_votes = {}
# Check if peaks match expected bar lengths
for ts, info in self.common_time_signatures.items():
beats_per_bar = info["beats_per_bar"]
# Check how well peaks match this meter
score = 0
for interval in peak_intervals:
# Check if this interval corresponds to this time signature
# Allow some tolerance around the expected value
expected = beats_per_bar * (hop_length / sr) # in seconds
tolerance = 0.25 * expected
if abs(interval * hop_length / sr - expected) < tolerance:
score += 1
if len(peak_intervals) > 0:
time_sig_votes[ts] = score / len(peak_intervals)
# Return most likely time signature
if time_sig_votes:
best_ts = max(time_sig_votes.items(), key=lambda x: x[1])
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
return {"time_signature": "4/4", "confidence": 0.4}
def _detect_by_pattern_matching(self, beat_strengths):
"""Match beat strength patterns against known time signature patterns"""
if len(beat_strengths) < 6:
return {"time_signature": "4/4", "confidence": 0.4}
results = {}
# Try each possible time signature
for ts, info in self.common_time_signatures.items():
beats_per_bar = info["beats_per_bar"]
expected_pattern = info["beat_pattern"]
# Calculate correlation scores for overlapping segments
scores = []
# We need at least one complete pattern
if len(beat_strengths) >= beats_per_bar:
# Try different offsets to find best alignment
for offset in range(min(beats_per_bar, len(beat_strengths) - beats_per_bar + 1)):
# Calculate scores for each complete pattern
pattern_scores = []
for i in range(offset, len(beat_strengths) - beats_per_bar + 1, beats_per_bar):
segment = beat_strengths[i:i+beats_per_bar]
# If expected pattern is longer than segment, truncate it
pattern = expected_pattern[:len(segment)]
# Normalize segment and pattern
if np.std(segment) > 0 and np.std(pattern) > 0:
# Calculate correlation
corr = np.corrcoef(segment, pattern)[0, 1]
if not np.isnan(corr):
pattern_scores.append(corr)
if pattern_scores:
scores.append(np.mean(pattern_scores))
# Use the best score among different offsets
if scores:
confidence = max(scores)
results[ts] = confidence
# Find best match
if results:
best_ts = max(results.items(), key=lambda x: x[1])
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
# Default
return {"time_signature": "4/4", "confidence": 0.5}
def _detect_by_spectral_analysis(self, onset_env, sr):
"""Analyze rhythm in frequency domain"""
# Get rhythm periodicity through Fourier Transform
# Focus on periods corresponding to typical bar lengths (1-8 seconds)
hop_length = 512
# Calculate rhythm periodicity
fft_size = 2**13 # Large enough to give good frequency resolution
S = np.abs(np.fft.rfft(onset_env, n=fft_size))
# Convert frequency to tempo in BPM
freqs = np.fft.rfftfreq(fft_size, d=hop_length/sr)
tempos = 60 * freqs
# Focus on reasonable tempo range (40-240 BPM)
tempo_mask = (tempos >= 40) & (tempos <= 240)
S_tempo = S[tempo_mask]
tempos = tempos[tempo_mask]
# Find peaks in spectrum
peaks = signal.find_peaks(S_tempo, height=np.max(S_tempo)*0.1, distance=5)[0]
if len(peaks) == 0:
return {"time_signature": "4/4", "confidence": 0.4}
# Get peak tempos and strengths
peak_tempos = tempos[peaks]
peak_strengths = S_tempo[peaks]
# Sort by strength
peak_indices = np.argsort(peak_strengths)[::-1]
peak_tempos = peak_tempos[peak_indices]
peak_strengths = peak_strengths[peak_indices]
# Analyze relationships between peaks
# For example, 3/4 typically has peaks at multiples of 3 beats
# 4/4 has peaks at multiples of 4 beats
time_sig_scores = {}
# Check relationships between top peaks
if len(peak_tempos) >= 2:
tempo_ratios = []
for i in range(len(peak_tempos)):
for j in range(i+1, len(peak_tempos)):
if peak_tempos[j] > 0:
ratio = peak_tempos[i] / peak_tempos[j]
tempo_ratios.append(ratio)
# Check for patterns indicative of different time signatures
for ts in self.common_time_signatures:
score = 0
if ts == "4/4" or ts == "6/8":
# Look for ratios close to 4 or 6
for ratio in tempo_ratios:
if abs(ratio - 4) < 0.2 or abs(ratio - 6) < 0.3:
score += 1
# Normalize score
if tempo_ratios:
time_sig_scores[ts] = min(1.0, score / len(tempo_ratios) + 0.4)
# If we have meaningful scores, return best match
if time_sig_scores:
best_ts = max(time_sig_scores.items(), key=lambda x: x[1])
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
# Default fallback
return {"time_signature": "4/4", "confidence": 0.4}
def _detect_by_note_density(self, y, sr, beat_times):
"""Analyze note density patterns between beats"""
if len(beat_times) < 6:
return {"time_signature": "4/4", "confidence": 0.4}
# Extract note onsets (not just beats)
onset_times = librosa.onset.onset_detect(y=y, sr=sr, units='time')
if len(onset_times) < len(beat_times):
return {"time_signature": "4/4", "confidence": 0.4}
# Count onsets between consecutive beats
note_counts = []
for i in range(len(beat_times) - 1):
start = beat_times[i]
end = beat_times[i+1]
# Count onsets in this beat
count = sum(1 for t in onset_times if start <= t < end)
note_counts.append(count)
# Look for repeating patterns in the note counts
time_sig_scores = {}
for ts, info in self.common_time_signatures.items():
beats_per_bar = info["beats_per_bar"]
# Skip if we don't have enough data
if len(note_counts) < beats_per_bar:
continue
# Calculate pattern similarity for this time signature
scores = []
for offset in range(min(beats_per_bar, len(note_counts) - beats_per_bar + 1)):
similarities = []
for i in range(offset, len(note_counts) - beats_per_bar + 1, beats_per_bar):
# Get current bar pattern
pattern = note_counts[i:i+beats_per_bar]
# Compare with expected density pattern
expected = self.rhythm_density.get(ts, [1.0] * beats_per_bar)
expected = expected[:len(pattern)] # Truncate if needed
# Normalize both patterns
if sum(pattern) > 0 and sum(expected) > 0:
pattern_norm = [p/max(1, sum(pattern)) for p in pattern]
expected_norm = [e/sum(expected) for e in expected]
# Calculate similarity (1 - distance)
distance = sum(abs(p - e) for p, e in zip(pattern_norm, expected_norm)) / len(pattern)
similarity = 1 - min(1.0, distance)
similarities.append(similarity)
if similarities:
scores.append(np.mean(similarities))
# Use the best score
if scores:
time_sig_scores[ts] = max(scores)
# Return best match
if time_sig_scores:
best_ts = max(time_sig_scores.items(), key=lambda x: x[1])
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
# Default
return {"time_signature": "4/4", "confidence": 0.4}
def _estimate_from_tempo(self, tempo):
"""Use tempo to help estimate likely time signature"""
# Statistical tendencies: slower tempos often in compound meters (6/8)
# Fast tempos favor 4/4
scores = {}
if tempo < 70:
# Slow tempos favor compound meters
scores = {
"4/4": 0.5,
"3/4": 0.4,
"6/8": 0.7
}
elif 70 <= tempo <= 120:
# Medium tempos favor 4/4, 3/4
scores = {
"4/4": 0.7,
"3/4": 0.6,
"6/8": 0.3
}
else:
# Fast tempos favor 4/4
scores = {
"4/4": 0.8,
"3/4": 0.4,
"6/8": 0.2
}
# Find best match
best_ts = max(scores.items(), key=lambda x: x[1])
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
def _combine_detection_results(self, results, tempo):
"""Combine results from different detection methods"""
# Define weights for different methods
method_weights = {
"autocorrelation": 0.25,
"pattern_matching": 0.30,
"spectral": 0.20,
"note_density": 0.20,
"tempo_based": 0.05
}
# Prior probability (based on frequency in music)
prior_weights = {ts: info["weight"] for ts, info in self.common_time_signatures.items()}
# Combine votes
total_votes = {ts: prior_weights.get(ts, 0.1) for ts in self.common_time_signatures}
for method, result in results.items():
ts = result["time_signature"]
confidence = result["confidence"]
weight = method_weights.get(method, 0.1)
# Add weighted vote
if ts in total_votes:
total_votes[ts] += confidence * weight
else:
total_votes[ts] = confidence * weight
# Special case: disambiguate between 3/4 and 6/8
if "3/4" in total_votes and "6/8" in total_votes:
# If the two are close, use tempo to break tie
if abs(total_votes["3/4"] - total_votes["6/8"]) < 0.1:
if tempo < 100: # Slower tempo favors 6/8
total_votes["6/8"] += 0.1
else: # Faster tempo favors 3/4
total_votes["3/4"] += 0.1
# Get highest scoring time signature
best_ts = max(total_votes.items(), key=lambda x: x[1])
# Calculate confidence score (normalize to 0-1)
confidence = best_ts[1] / (sum(total_votes.values()) + 0.001)
confidence = min(0.95, max(0.4, confidence)) # Bound confidence
return {
"time_signature": best_ts[0],
"confidence": confidence,
"all_candidates": {ts: float(score) for ts, score in total_votes.items()}
}
def analyze_beat_pattern(self, audio_path, sr=22050, time_signature="4/4", auto_detect=False):
"""Analyze beat patterns and stresses in music using the provided time signature."""
# Auto-detect time signature if requested
if auto_detect:
time_sig_result = self.detect_time_signature(audio_path, sr)
time_signature = time_sig_result["time_signature"]
# Load audio
y, sr = librosa.load(audio_path, sr=sr)
# Get tempo and beat frames
tempo, beat_frames = librosa.beat.beat_track(y=y, sr=sr)
beat_times = librosa.frames_to_time(beat_frames, sr=sr)
# Get beat strengths using onset envelope
onset_env = librosa.onset.onset_strength(y=y, sr=sr)
beat_strengths = onset_env[beat_frames]
# Normalize beat strengths
if len(beat_strengths) > 0 and np.max(beat_strengths) > np.min(beat_strengths):
beat_strengths = (beat_strengths - np.min(beat_strengths)) / (np.max(beat_strengths) - np.min(beat_strengths))
# Parse time signature
if '/' in time_signature:
num, denom = map(int, time_signature.split('/'))
else:
num, denom = 4, 4 # Default to 4/4
# Group beats into bars (each bar is one phrase based on time signature)
bars = []
current_bar = []
for i, (time, strength) in enumerate(zip(beat_times, beat_strengths)):
# Determine metrical position and stress
metrical_position = i % num
# Define stress pattern according to time signature
if time_signature == "4/4":
if metrical_position == 0: # First beat (strongest)
stress = "S" # Strong
elif metrical_position == 2: # Third beat (medium)
stress = "M" # Medium
else: # Second and fourth beats (weak)
stress = "W" # Weak
elif time_signature == "3/4":
if metrical_position == 0: # First beat (strongest)
stress = "S" # Strong
else: # Other beats (weak)
stress = "W" # Weak
elif time_signature == "6/8":
if metrical_position == 0: # First beat (strongest)
stress = "S" # Strong
elif metrical_position == 3: # Fourth beat (medium)
stress = "M" # Medium
else: # Other beats (weak)
stress = "W" # Weak
else:
# Default pattern for other time signatures
if metrical_position == 0:
stress = "S"
else:
stress = "W"
# Add beat to current bar
current_bar.append({
'time': time,
'strength': strength,
'stress': stress,
'metrical_position': metrical_position
})
# When we complete a bar, add it to our bars list
if metrical_position == num - 1 or i == len(beat_times) - 1:
if current_bar:
bars.append(current_bar)
current_bar = []
# If there's any remaining beats, add them as a partial bar
if current_bar:
bars.append(current_bar)
# Organize beats into phrases (one phrase = one bar)
phrases = []
for i, bar in enumerate(bars):
phrase_beats = bar
if not phrase_beats:
continue
# Calculate the phrase information
phrase = {
'id': i,
'num_beats': len(phrase_beats),
'beats': phrase_beats,
'stress_pattern': ''.join(beat['stress'] for beat in phrase_beats),
'start_time': phrase_beats[0]['time'],
'end_time': phrase_beats[-1]['time'] + (phrase_beats[-1]['time'] - phrase_beats[-2]['time'] if len(phrase_beats) > 1 else 0.5),
}
phrases.append(phrase)
return {
'tempo': tempo,
'time_signature': time_signature,
'num_beats': len(beat_times),
'beat_times': beat_times.tolist(),
'beat_strengths': beat_strengths.tolist(),
'phrases': phrases
}
def create_lyric_template(self, beat_analysis):
"""Create templates for lyrics based on beat phrases."""
templates = []
if not beat_analysis or 'phrases' not in beat_analysis:
return templates
phrases = beat_analysis['phrases']
for i, phrase in enumerate(phrases):
duration = phrase['end_time'] - phrase['start_time']
template = {
'id': phrase['id'],
'start_time': phrase['start_time'],
'end_time': phrase['end_time'],
'duration': duration,
'num_beats': phrase['num_beats'],
'stress_pattern': phrase['stress_pattern'],
'syllable_guide': self.generate_phrase_guide(phrase)
}
templates.append(template)
return templates
def generate_phrase_guide(self, template, words_per_beat=0.5):
"""Generate a guide for each phrase to help the LLM."""
num_beats = template['num_beats']
stress_pattern = template['stress_pattern']
# Create a visual representation of the stress pattern
# S = Strong stress, M = Medium stress, W = Weak stress
visual_pattern = ""
for i, stress in enumerate(stress_pattern):
if stress == "S":
visual_pattern += "STRONG "
elif stress == "M":
visual_pattern += "medium "
else:
visual_pattern += "weak "
# Estimate number of words based on beats (very rough estimate)
est_words = max(1, int(num_beats * 0.3)) # Reduced further to encourage extreme brevity
# Estimate syllables - use ultra conservative ranges
# For 4/4 time signature, we want to enforce extremely short phrases
if stress_pattern == "SWMW": # 4/4 time
min_syllables = max(1, int(num_beats * 0.4)) # Reduced from 0.5
max_syllables = min(6, int(num_beats * 1.2)) # Reduced from 1.3 to max 6
else:
min_syllables = max(1, int(num_beats * 0.4)) # Reduced from 0.5
max_syllables = min(6, int(num_beats * 1.1)) # Reduced from 1.2 to max 6
# Store these in the template for future reference
template['min_expected'] = min_syllables
template['max_expected'] = max_syllables
guide = f"~{est_words} words, ~{min_syllables}-{max_syllables} syllables | Pattern: {visual_pattern}"
# Add additional guidance to the template for natural phrasing
template['phrasing_guide'] = "ULTRA SHORT LINES. One thought per line. Use FRAGMENTS not sentences."
return guide
def check_syllable_stress_match(self, text, template, genre="pop"):
"""Check if lyrics match the syllable and stress pattern with genre-specific flexibility."""
# Split text into words and count syllables
words = text.split()
syllable_count = sum(self.count_syllables(word) for word in words)
# Get expected syllable count based on number of beats
expected_count = template['num_beats']
# Get syllable-to-beat ratios based on genre
genre_lower = genre.lower()
if genre_lower in self.genre_syllable_ratios:
min_ratio, typical_ratio, max_ratio = self.genre_syllable_ratios[genre_lower]
else:
min_ratio, typical_ratio, max_ratio = self.genre_syllable_ratios['default']
# Calculate flexible min and max syllable expectations based on genre
# Use extremely conservative ranges to enforce ultra-short lines
min_expected = max(1, int(expected_count * min_ratio))
max_expected = min(6, int(expected_count * max_ratio)) # Hard cap at 6 syllables
# For 4/4 time signature, cap the max syllables per line even lower
if template['stress_pattern'] == "SWMW": # 4/4 time
max_expected = min(max_expected, 6) # Cap at 6 syllables max for 4/4
# Record min and max expected in the template for future reference
template['min_expected'] = min_expected
template['max_expected'] = max_expected
# Check if syllable count falls within genre-appropriate range
within_range = min_expected <= syllable_count <= max_expected
# Consider typical ratio - how close are we to the ideal for this genre?
ideal_count = int(expected_count * typical_ratio)
# Ensure ideal count is also within our constrained range
ideal_count = max(min_expected, min(max_expected, ideal_count))
# More lenient approach to determining "ideal"
# Count as ideal if within 1 syllable of the target instead of exact match
close_to_ideal = abs(syllable_count - ideal_count) <= 1
closeness_to_ideal = 1.0 - min(abs(syllable_count - ideal_count) / (max_expected - min_expected + 1), 1.0)
# Get detailed syllable breakdown for stress analysis
word_syllables = []
for word in words:
count = self.count_syllables(word)
word_syllables.append(count)
# Analyze stress pattern match using a more flexible approach
stress_pattern = template['stress_pattern']
# Simple stress matching algorithm (can be improved in future versions)
# We need to map syllables to beats in a more flexible way
syllable_to_beat_mapping = self._map_syllables_to_beats(word_syllables, stress_pattern)
# Calculate stress match score based on alignment of stressed syllables with strong beats
stress_match_percentage = self._calculate_stress_match(words, word_syllables, syllable_to_beat_mapping, stress_pattern)
# Consider a stress match if the percentage is high enough
stress_matches = stress_match_percentage >= 0.6 # Reduced from 0.7 to be more lenient
return {
'syllable_count': syllable_count,
'expected_count': expected_count,
'min_expected': min_expected,
'max_expected': max_expected,
'within_range': within_range,
'matches_beat_count': syllable_count == expected_count, # Exact match (strict)
'close_match': within_range, # Flexible match (based on genre)
'stress_matches': stress_matches,
'stress_match_percentage': stress_match_percentage,
'closeness_to_ideal': closeness_to_ideal,
'word_syllables': word_syllables,
'ideal_syllable_count': ideal_count,
'close_to_ideal': close_to_ideal # New field
}
def _map_syllables_to_beats(self, word_syllables, stress_pattern):
"""Map syllables to beats in a flexible way."""
total_syllables = sum(word_syllables)
total_beats = len(stress_pattern)
# Simple mapping for now - this could be improved with more sophisticated algorithms
if total_syllables <= total_beats:
# Fewer syllables than beats - some beats have no syllables (prolongation)
mapping = []
syllable_index = 0
for beat_index in range(total_beats):
if syllable_index < total_syllables:
mapping.append((syllable_index, beat_index))
syllable_index += 1
return mapping
else:
# More syllables than beats - some beats have multiple syllables (melisma/syncopation)
mapping = []
syllables_per_beat = total_syllables / total_beats
for beat_index in range(total_beats):
start_syllable = int(beat_index * syllables_per_beat)
end_syllable = int((beat_index + 1) * syllables_per_beat)
for syllable_index in range(start_syllable, end_syllable):
if syllable_index < total_syllables:
mapping.append((syllable_index, beat_index))
return mapping
def _calculate_stress_match(self, words, word_syllables, syllable_to_beat_mapping, stress_pattern):
"""Calculate how well syllable stresses match beat stresses."""
# This is a simplified version - real stress analysis would be more complex
# For now, we'll assume the first syllable of each word is stressed
# First, create a flat list of all syllables with their stress (1 = stressed, 0 = unstressed)
syllable_stresses = []
for word, syllable_count in zip(words, word_syllables):
# Simple assumption: first syllable is stressed, rest are unstressed
for i in range(syllable_count):
if i == 0: # First syllable of word
syllable_stresses.append(1) # Stressed
else:
syllable_stresses.append(0) # Unstressed
# Count matches between syllable stress and beat stress
matches = 0
total_mapped = 0
for syllable_index, beat_index in syllable_to_beat_mapping:
if syllable_index < len(syllable_stresses):
syllable_stress = syllable_stresses[syllable_index]
beat_stress = 1 if stress_pattern[beat_index] == 'S' else (0.5 if stress_pattern[beat_index] == 'M' else 0)
# Consider it a match if:
# - Stressed syllable on Strong beat
# - Unstressed syllable on Weak beat
# - Some partial credit for other combinations
if (syllable_stress == 1 and beat_stress > 0.5) or (syllable_stress == 0 and beat_stress < 0.5):
matches += 1
elif syllable_stress == 1 and beat_stress == 0.5: # Stressed syllable on Medium beat
matches += 0.7
total_mapped += 1
if total_mapped == 0:
return 0
return matches / total_mapped