File size: 3,578 Bytes
cddc4c2
 
 
 
 
 
 
 
fee88b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cddc4c2
 
fee88b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cddc4c2
fee88b4
 
 
cddc4c2
 
 
 
 
fee88b4
cddc4c2
 
 
 
fee88b4
cddc4c2
fee88b4
 
 
 
cddc4c2
 
 
 
fee88b4
 
cddc4c2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Load model and tokenizer
model_id = "jatingocodeo/SmolLM2"

def load_model():
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        # Ensure the tokenizer has the necessary special tokens
        special_tokens = {
            'pad_token': '[PAD]',
            'eos_token': '</s>',
            'bos_token': '<s>'
        }
        tokenizer.add_special_tokens(special_tokens)
        
        model = AutoModelForCausalLM.from_pretrained(
            model_id,
            torch_dtype=torch.float16,
            device_map="auto",
            pad_token_id=tokenizer.pad_token_id
        )
        # Resize token embeddings to match new tokenizer
        model.resize_token_embeddings(len(tokenizer))
        return model, tokenizer
    except Exception as e:
        print(f"Error loading model: {str(e)}")
        raise

def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
    try:
        # Load model and tokenizer (caching them for subsequent calls)
        if not hasattr(generate_text, "model"):
            generate_text.model, generate_text.tokenizer = load_model()
        
        # Ensure the prompt is not empty
        if not prompt.strip():
            return "Please enter a prompt."
        
        # Add BOS token if needed
        if not prompt.startswith(generate_text.tokenizer.bos_token):
            prompt = generate_text.tokenizer.bos_token + prompt
        
        # Encode the prompt
        input_ids = generate_text.tokenizer.encode(prompt, return_tensors="pt", truncation=True, max_length=2048)
        input_ids = input_ids.to(generate_text.model.device)
        
        # Generate text
        with torch.no_grad():
            output_ids = generate_text.model.generate(
                input_ids,
                max_length=min(max_length + len(input_ids[0]), 2048),  # Respect model's max length
                temperature=temperature,
                top_k=top_k,
                do_sample=True,
                pad_token_id=generate_text.tokenizer.pad_token_id,
                eos_token_id=generate_text.tokenizer.eos_token_id,
                num_return_sequences=1
            )
        
        # Decode and return the generated text
        generated_text = generate_text.tokenizer.decode(output_ids[0], skip_special_tokens=True)
        return generated_text.strip()
    
    except Exception as e:
        print(f"Error during generation: {str(e)}")
        return f"An error occurred: {str(e)}"

# Create Gradio interface
iface = gr.Interface(
    fn=generate_text,
    inputs=[
        gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", lines=2),
        gr.Slider(minimum=10, maximum=200, value=100, step=1, label="Max Length"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top K"),
    ],
    outputs=gr.Textbox(label="Generated Text", lines=5),
    title="SmolLM2 Text Generator",
    description="""Generate text using the fine-tuned SmolLM2 model.
    - Max Length: Controls the length of generated text
    - Temperature: Controls randomness (higher = more creative)
    - Top K: Controls diversity of word choices""",
    examples=[
        ["Once upon a time", 100, 0.7, 50],
        ["The quick brown fox", 150, 0.8, 40],
        ["In a galaxy far far away", 200, 0.9, 30],
    ],
    allow_flagging="never"
)

if __name__ == "__main__":
    iface.launch()