SmolLM2 / app.py
jatingocodeo's picture
Update app.py
bbaff56 verified
raw
history blame
6.48 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedModel, PretrainedConfig
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
# Model architecture definition
class SmolLM2Config(PretrainedConfig):
model_type = "smollm2"
def __init__(
self,
vocab_size=49152,
hidden_size=576,
intermediate_size=1536,
num_hidden_layers=30,
num_attention_heads=9,
num_key_value_heads=3,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.041666666666666664,
rms_norm_eps=1e-5,
use_cache=True,
pad_token_id=None,
bos_token_id=0,
eos_token_id=0,
tie_word_embeddings=True,
rope_theta=10000.0,
**kwargs
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs
)
class SmolLM2ForCausalLM(PreTrainedModel):
config_class = SmolLM2Config
_no_split_modules = ["LlamaDecoderLayer"]
def __init__(self, config):
super().__init__(config)
self.config = config
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
if config.tie_word_embeddings:
self.lm_head.weight = self.embed_tokens.weight
def forward(self, input_ids, attention_mask=None, labels=None):
hidden_states = self.embed_tokens(input_ids)
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1))
return logits if loss is None else (loss, logits)
def prepare_inputs_for_generation(self, input_ids, **kwargs):
return {"input_ids": input_ids}
# Register the model architecture
from transformers import AutoConfig, AutoModelForCausalLM
AutoConfig.register("smollm2", SmolLM2Config)
AutoModelForCausalLM.register(SmolLM2Config, SmolLM2ForCausalLM)
# Load model and tokenizer
model_id = "jatingocodeo/SmolLM2"
def load_model():
try:
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Ensure the tokenizer has the necessary special tokens
special_tokens = {
'pad_token': '[PAD]',
'eos_token': '</s>',
'bos_token': '<s>'
}
tokenizer.add_special_tokens(special_tokens)
# Load model without device_map
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
pad_token_id=tokenizer.pad_token_id
)
# Move model to device manually
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
# Resize token embeddings to match new tokenizer
model.resize_token_embeddings(len(tokenizer))
return model, tokenizer
except Exception as e:
print(f"Error loading model: {str(e)}")
raise
def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
try:
# Load model and tokenizer (caching them for subsequent calls)
if not hasattr(generate_text, "model"):
generate_text.model, generate_text.tokenizer = load_model()
# Ensure the prompt is not empty
if not prompt.strip():
return "Please enter a prompt."
# Add BOS token if needed
if not prompt.startswith(generate_text.tokenizer.bos_token):
prompt = generate_text.tokenizer.bos_token + prompt
# Encode the prompt
input_ids = generate_text.tokenizer.encode(prompt, return_tensors="pt", truncation=True, max_length=2048)
input_ids = input_ids.to(generate_text.model.device)
# Generate text
with torch.no_grad():
output_ids = generate_text.model.generate(
input_ids,
max_length=min(max_length + len(input_ids[0]), 2048), # Respect model's max length
temperature=temperature,
top_k=top_k,
do_sample=True,
pad_token_id=generate_text.tokenizer.pad_token_id,
eos_token_id=generate_text.tokenizer.eos_token_id,
num_return_sequences=1
)
# Decode and return the generated text
generated_text = generate_text.tokenizer.decode(output_ids[0], skip_special_tokens=True)
return generated_text.strip()
except Exception as e:
print(f"Error during generation: {str(e)}")
return f"An error occurred: {str(e)}"
# Create Gradio interface
iface = gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", lines=2),
gr.Slider(minimum=10, maximum=200, value=100, step=1, label="Max Length"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top K"),
],
outputs=gr.Textbox(label="Generated Text", lines=5),
title="SmolLM2 Text Generator",
description="""Generate text using the fine-tuned SmolLM2 model.
- Max Length: Controls the length of generated text
- Temperature: Controls randomness (higher = more creative)
- Top K: Controls diversity of word choices""",
examples=[
["Once upon a time", 100, 0.7, 50],
["The quick brown fox", 150, 0.8, 40],
["In a galaxy far far away", 200, 0.9, 30],
],
allow_flagging="never"
)
if __name__ == "__main__":
iface.launch()