Spaces:
Runtime error
Runtime error
File size: 6,481 Bytes
cddc4c2 7276d4c cddc4c2 7276d4c bbaff56 7276d4c cddc4c2 fee88b4 bbaff56 fee88b4 bbaff56 fee88b4 cddc4c2 fee88b4 cddc4c2 fee88b4 cddc4c2 fee88b4 cddc4c2 fee88b4 cddc4c2 fee88b4 cddc4c2 fee88b4 cddc4c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedModel, PretrainedConfig
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
# Model architecture definition
class SmolLM2Config(PretrainedConfig):
model_type = "smollm2"
def __init__(
self,
vocab_size=49152,
hidden_size=576,
intermediate_size=1536,
num_hidden_layers=30,
num_attention_heads=9,
num_key_value_heads=3,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.041666666666666664,
rms_norm_eps=1e-5,
use_cache=True,
pad_token_id=None,
bos_token_id=0,
eos_token_id=0,
tie_word_embeddings=True,
rope_theta=10000.0,
**kwargs
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs
)
class SmolLM2ForCausalLM(PreTrainedModel):
config_class = SmolLM2Config
_no_split_modules = ["LlamaDecoderLayer"]
def __init__(self, config):
super().__init__(config)
self.config = config
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
if config.tie_word_embeddings:
self.lm_head.weight = self.embed_tokens.weight
def forward(self, input_ids, attention_mask=None, labels=None):
hidden_states = self.embed_tokens(input_ids)
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1))
return logits if loss is None else (loss, logits)
def prepare_inputs_for_generation(self, input_ids, **kwargs):
return {"input_ids": input_ids}
# Register the model architecture
from transformers import AutoConfig, AutoModelForCausalLM
AutoConfig.register("smollm2", SmolLM2Config)
AutoModelForCausalLM.register(SmolLM2Config, SmolLM2ForCausalLM)
# Load model and tokenizer
model_id = "jatingocodeo/SmolLM2"
def load_model():
try:
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Ensure the tokenizer has the necessary special tokens
special_tokens = {
'pad_token': '[PAD]',
'eos_token': '</s>',
'bos_token': '<s>'
}
tokenizer.add_special_tokens(special_tokens)
# Load model without device_map
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
pad_token_id=tokenizer.pad_token_id
)
# Move model to device manually
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
# Resize token embeddings to match new tokenizer
model.resize_token_embeddings(len(tokenizer))
return model, tokenizer
except Exception as e:
print(f"Error loading model: {str(e)}")
raise
def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
try:
# Load model and tokenizer (caching them for subsequent calls)
if not hasattr(generate_text, "model"):
generate_text.model, generate_text.tokenizer = load_model()
# Ensure the prompt is not empty
if not prompt.strip():
return "Please enter a prompt."
# Add BOS token if needed
if not prompt.startswith(generate_text.tokenizer.bos_token):
prompt = generate_text.tokenizer.bos_token + prompt
# Encode the prompt
input_ids = generate_text.tokenizer.encode(prompt, return_tensors="pt", truncation=True, max_length=2048)
input_ids = input_ids.to(generate_text.model.device)
# Generate text
with torch.no_grad():
output_ids = generate_text.model.generate(
input_ids,
max_length=min(max_length + len(input_ids[0]), 2048), # Respect model's max length
temperature=temperature,
top_k=top_k,
do_sample=True,
pad_token_id=generate_text.tokenizer.pad_token_id,
eos_token_id=generate_text.tokenizer.eos_token_id,
num_return_sequences=1
)
# Decode and return the generated text
generated_text = generate_text.tokenizer.decode(output_ids[0], skip_special_tokens=True)
return generated_text.strip()
except Exception as e:
print(f"Error during generation: {str(e)}")
return f"An error occurred: {str(e)}"
# Create Gradio interface
iface = gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", lines=2),
gr.Slider(minimum=10, maximum=200, value=100, step=1, label="Max Length"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top K"),
],
outputs=gr.Textbox(label="Generated Text", lines=5),
title="SmolLM2 Text Generator",
description="""Generate text using the fine-tuned SmolLM2 model.
- Max Length: Controls the length of generated text
- Temperature: Controls randomness (higher = more creative)
- Top K: Controls diversity of word choices""",
examples=[
["Once upon a time", 100, 0.7, 50],
["The quick brown fox", 150, 0.8, 40],
["In a galaxy far far away", 200, 0.9, 30],
],
allow_flagging="never"
)
if __name__ == "__main__":
iface.launch() |