File size: 3,954 Bytes
cbc5566
9dfc63c
 
 
 
 
bf44ad8
 
 
cbc5566
38d7439
2255b93
cbc5566
38d7439
9dfc63c
2255b93
 
 
 
 
 
9dfc63c
38d7439
9dfc63c
2255b93
 
 
 
 
 
 
 
 
9dfc63c
38d7439
2255b93
 
9dfc63c
38d7439
9dfc63c
2255b93
 
 
 
9dfc63c
 
aae3560
610d493
40efeb4
2255b93
610d493
 
 
 
 
 
 
40efeb4
610d493
2255b93
610d493
 
 
 
 
 
 
40efeb4
610d493
 
40efeb4
 
 
 
 
610d493
2255b93
40efeb4
 
2255b93
bf44ad8
2255b93
 
 
40efeb4
bf44ad8
2255b93
 
 
 
 
 
 
40efeb4
2255b93
9dfc63c
fb31436
a62d15d
2255b93
40efeb4
 
2255b93
bf44ad8
 
a62d15d
 
ce20917
40efeb4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import gradio as gr
import torch
from torch import nn
from torchvision import models, transforms
from huggingface_hub import hf_hub_download
from PIL import Image
import requests
import base64
from io import BytesIO

# Define the number of classes
num_classes = 2  # Update with the actual number of classes in your dataset

# Download model from Hugging Face
def download_model():
    try:
        model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin")
        return model_path
    except Exception as e:
        print(f"Error downloading model: {e}")
        return None

# Load the model from Hugging Face
def load_model(model_path):
    try:
        model = models.resnet50(pretrained=False)
        model.fc = nn.Linear(model.fc.in_features, num_classes)
        model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
        model.eval()
        return model
    except Exception as e:
        print(f"Error loading model: {e}")
        return None

# Download the model and load it
model_path = download_model()
model = load_model(model_path) if model_path else None

# Define the transformation for the input image
transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])

def predict(image):
    try:
        print(f"Received image input: {image}")

        # Check if the input contains a base64-encoded string
        if isinstance(image, dict) and image.get("data"):
            try:
                image_data = base64.b64decode(image["data"])
                image = Image.open(BytesIO(image_data))
                print(f"Decoded base64 image: {image}")
            except Exception as e:
                print(f"Error decoding base64 image: {e}")
                return f"Error decoding base64 image: {e}"

        # Check if the input is a URL
        elif isinstance(image, str) and image.startswith("http"):
            try:
                response = requests.get(image)
                image = Image.open(BytesIO(response.content))
                print(f"Fetched image from URL: {image}")
            except Exception as e:
                print(f"Error fetching image from URL: {e}")
                return f"Error fetching image from URL: {e}"

        # Validate that the image is correctly loaded
        if not isinstance(image, Image.Image):
            print("Invalid image format received.")
            return "Invalid image format received."

        # Apply transformations
        image = transform(image).unsqueeze(0)
        print(f"Transformed image tensor: {image.shape}")

        image = image.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))

        with torch.no_grad():
            outputs = model(image)
            predicted_class = torch.argmax(outputs, dim=1).item()
            print(f"Prediction output: {outputs}, Predicted class: {predicted_class}")

        if predicted_class == 0:
            return "The photo you've sent is of fall army worm with problem ID 126."
        elif predicted_class == 1:
            return "The photo you've sent is of a healthy maize image."
        else:
            return "Unexpected class prediction."
    except Exception as e:
        print(f"Error processing image: {e}")
        return f"Error processing image: {e}"

# Create the Gradio interface
iface = gr.Interface(
    fn=predict,
    inputs=gr.Image(type="pil", label="Upload an image or provide a URL"),  # Input: Image or URL
    outputs=gr.Textbox(label="Prediction Result"),  # Output: Predicted class
    live=True,
    title="Maize Anomaly Detection",
    description="Upload an image of maize to detect anomalies like disease or pest infestation. You can provide local paths, URLs, or base64-encoded images."
)

# Launch the Gradio interface
iface.launch(share=True, show_error=True)