File size: 2,989 Bytes
cbc5566
9dfc63c
 
 
 
 
bf44ad8
 
 
cbc5566
38d7439
 
cbc5566
38d7439
9dfc63c
eff8876
9dfc63c
 
38d7439
9dfc63c
38d7439
 
 
 
9dfc63c
 
38d7439
 
9dfc63c
 
38d7439
9dfc63c
 
 
 
38d7439
9dfc63c
 
bf44ad8
aae3560
 
 
 
 
 
bf44ad8
aae3560
 
 
bf44ad8
aae3560
9dfc63c
aae3560
 
38d7439
 
9dfc63c
 
 
aae3560
9dfc63c
 
 
fb31436
a62d15d
38d7439
 
 
 
bf44ad8
 
a62d15d
 
ce20917
61dc7b2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import gradio as gr
import torch
from torch import nn
from torchvision import models, transforms
from huggingface_hub import hf_hub_download
from PIL import Image
import requests
import base64
from io import BytesIO

# Define the number of classes
num_classes = 2  # Update with the actual number of classes in your dataset (e.g., 2 for healthy and anomalous)

# Download model from Hugging Face
def download_model():
    model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin")
    return model_path

# Load the model from Hugging Face
def load_model(model_path):
    model = models.resnet50(pretrained=False)  # Set pretrained=False because you're loading custom weights
    model.fc = nn.Linear(model.fc.in_features, num_classes)  # Adjust for the number of classes in your dataset
    model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))  # Load model on CPU for compatibility
    model.eval()  # Set to evaluation mode
    return model

# Download the model and load it
model_path = download_model()  # Downloads the model from Hugging Face Hub
model = load_model(model_path)

# Define the transformation for the input image
transform = transforms.Compose([
    transforms.Resize(256),  # Resize the image to 256x256
    transforms.CenterCrop(224),  # Crop the image to 224x224
    transforms.ToTensor(),  # Convert the image to a Tensor
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),  # Normalize the image (ImageNet mean and std)
])


def predict(image):
    # Check if the input contains a base64-encoded string
    if isinstance(image, dict) and image.get("data"):
        # Decode the base64 string into a PIL image
        image_data = base64.b64decode(image["data"])
        image = Image.open(BytesIO(image_data))

    # Apply your existing transformations
    image = transform(image).unsqueeze(0)  # Transform and add batch dimension
    image = image.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))

    # Perform inference
    with torch.no_grad():
        outputs = model(image)
        predicted_class = torch.argmax(outputs, dim=1).item()
    
    # Create a response based on the predicted class
    if predicted_class == 0:
        return "The photo you've sent is of fall army worm with problem ID 126."
    elif predicted_class == 1:
        return "The photo you've sent is of a healthy maize image."
    else:
        return "Unexpected class prediction."

# Create the Gradio interface
iface = gr.Interface(
    fn=predict,  # Function for prediction
    inputs=gr.Image(type="pil"),  # Image input
    outputs=gr.Textbox(),  # Output: Predicted class
    live=True,  # Updates as the user uploads an image
    title="Maize Anomaly Detection",
    description="Upload an image of maize to detect anomalies like disease or pest infestation. You can provide local paths, URLs, or base64-encoded images."
)

# Launch the Gradio interface
iface.launch(share=True)