jays009's picture
Update app.py
342396f verified
raw
history blame
3.32 kB
import gradio as gr
import json
import torch
from torch import nn
from torchvision import models, transforms
from huggingface_hub import hf_hub_download
from PIL import Image
import requests
import os
from io import BytesIO
# Define the number of classes
num_classes = 2
# Download model from Hugging Face
def download_model():
model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin")
return model_path
# Load the model from Hugging Face
def load_model(model_path):
model = models.resnet50(pretrained=False)
model.fc = nn.Linear(model.fc.in_features, num_classes)
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
model.eval()
return model
# Download the model and load it
model_path = download_model()
model = load_model(model_path)
# Define the transformation for the input image
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
# Function to predict from image content
def predict_from_image(image):
# Ensure the image is a PIL Image
if not isinstance(image, Image.Image):
raise ValueError("Invalid image format received. Please provide a valid image.")
# Apply transformations
image_tensor = transform(image).unsqueeze(0)
# Predict
with torch.no_grad():
outputs = model(image_tensor)
predicted_class = torch.argmax(outputs, dim=1).item()
# Interpret the result
if predicted_class == 0:
return {"result": "The photo is of fall army worm with problem ID 126."}
elif predicted_class == 1:
return {"result": "The photo is of a healthy maize image."}
else:
return {"error": "Unexpected class prediction."}
# Function to handle image from URL or file path
def predict_from_url_or_path(url=None, path=None):
try:
# If URL is provided, fetch and process image
if url:
response = requests.get(url)
response.raise_for_status() # Ensure the request was successful
image = Image.open(BytesIO(response.content))
return predict_from_image(image)
# If path is provided, open the image from the local path
elif path:
if not os.path.exists(path):
return {"error": f"File not found at {path}"}
image = Image.open(path)
return predict_from_image(image)
else:
return {"error": "No valid input provided."}
except Exception as e:
return {"error": f"Failed to process the input: {str(e)}"}
# Gradio interface
iface = gr.Interface(
fn=lambda url, path: predict_from_url_or_path(url=url, path=path),
inputs=[
gr.Textbox(label="Enter Image URL", placeholder="Provide a valid image URL (optional)", optional=True),
gr.Textbox(label="Or Enter Local Image Path", placeholder="Provide the local image path (optional)", optional=True),
],
outputs=gr.JSON(label="Prediction Result"),
live=True,
title="Maize Anomaly Detection",
description="Provide either an image URL or a local file path to detect anomalies in maize crops.",
)
# Launch the interface
iface.launch(share=True, show_error=True)