File size: 15,324 Bytes
0ad7e2a
 
 
 
 
 
 
 
 
c8589f9
64a70c0
 
0ad7e2a
64a70c0
0ad7e2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66c6879
 
 
 
0ad7e2a
 
 
64a70c0
0ad7e2a
892fa67
0ad7e2a
 
 
 
 
 
 
 
892fa67
 
 
0ad7e2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adc5756
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ad7e2a
64a70c0
adc5756
0ad7e2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64a70c0
 
0ad7e2a
892fa67
0ad7e2a
 
 
892fa67
 
 
 
 
 
 
 
c8589f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
892fa67
 
 
 
 
 
 
 
 
 
0ad7e2a
892fa67
0ad7e2a
892fa67
c8589f9
0ad7e2a
c8589f9
 
 
 
 
 
 
 
0ad7e2a
 
 
 
 
 
 
 
 
 
 
 
 
c8589f9
0ad7e2a
c8589f9
0ad7e2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
892fa67
0ad7e2a
 
892fa67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ad7e2a
 
892fa67
 
 
0ad7e2a
892fa67
0ad7e2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64a70c0
 
0ad7e2a
 
 
 
64a70c0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import platform
import gradio as gr
from pathlib import Path
import logging
import asyncio
from typing import Any, Optional, Dict, List, Union, Tuple

from ..services import TrainingService, CaptioningService, SplittingService, ImportService
from ..config import (
    STORAGE_PATH, VIDEOS_TO_SPLIT_PATH, STAGING_PATH, OUTPUT_PATH,
    TRAINING_PATH, LOG_FILE_PATH, TRAINING_PRESETS, TRAINING_VIDEOS_PATH, MODEL_PATH, OUTPUT_PATH,
    MODEL_TYPES, SMALL_TRAINING_BUCKETS
)
from ..utils import count_media_files, format_media_title, TrainingLogParser
from ..tabs import ImportTab, SplitTab, CaptionTab, TrainTab, ManageTab

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)

httpx_logger = logging.getLogger('httpx')
httpx_logger.setLevel(logging.WARN)

class VideoTrainerUI:       
    def __init__(self):
        """Initialize services and tabs"""
        # Initialize core services
        self.trainer = TrainingService()
        self.splitter = SplittingService()
        self.importer = ImportService()
        self.captioner = CaptioningService()
        
        # Recovery status from any interrupted training
        recovery_result = self.trainer.recover_interrupted_training()
        # Add null check for recovery_result
        if recovery_result is None:
            recovery_result = {"status": "unknown", "ui_updates": {}}
        
        self.recovery_status = recovery_result.get("status", "unknown")
        self.ui_updates = recovery_result.get("ui_updates", {})
        
        # Initialize log parser
        self.log_parser = TrainingLogParser()

        # Shared state for tabs
        self.state = {
            "recovery_result": recovery_result
        }
        
        # Initialize tabs dictionary (will be populated in create_ui)
        self.tabs = {}
        self.tabs_component = None

        # Log recovery status
        logger.info(f"Initialization complete. Recovery status: {self.recovery_status}")
        
    def create_ui(self):
        """Create the main Gradio UI"""
        with gr.Blocks(title="🎥 Video Model Studio") as app:
            gr.Markdown("# 🎥 Video Model Studio")
            
            # Create main tabs component
            with gr.Tabs() as self.tabs_component:
                # Initialize tab objects
                self.tabs["import_tab"] = ImportTab(self)
                self.tabs["split_tab"] = SplitTab(self)
                self.tabs["caption_tab"] = CaptionTab(self)
                self.tabs["train_tab"] = TrainTab(self)
                self.tabs["manage_tab"] = ManageTab(self)
                
                # Create tab UI components
                for tab_id, tab_obj in self.tabs.items():
                    tab_obj.create(self.tabs_component)
            
            # Connect event handlers
            for tab_id, tab_obj in self.tabs.items():
                tab_obj.connect_events()
            
            # Add app-level timers for auto-refresh functionality
            self._add_timers()
            
            # Initialize app state on load
            app.load(
                fn=self.initialize_app_state,
                outputs=[
                    self.tabs["split_tab"].components["video_list"],
                    self.tabs["caption_tab"].components["training_dataset"],
                    self.tabs["train_tab"].components["start_btn"],
                    self.tabs["train_tab"].components["stop_btn"],
                    self.tabs["train_tab"].components["pause_resume_btn"],
                    self.tabs["train_tab"].components["training_preset"],
                    self.tabs["train_tab"].components["model_type"],
                    self.tabs["train_tab"].components["lora_rank"],
                    self.tabs["train_tab"].components["lora_alpha"],
                    self.tabs["train_tab"].components["num_epochs"],
                    self.tabs["train_tab"].components["batch_size"],
                    self.tabs["train_tab"].components["learning_rate"],
                    self.tabs["train_tab"].components["save_iterations"]
                ]
            )
            
        return app
    
    def _add_timers(self):
        """Add auto-refresh timers to the UI"""
        # Status update timer (every 1 second)
        status_timer = gr.Timer(value=1)
        
        # Use a safer approach - check if the component exists before using it
        outputs = [
            self.tabs["train_tab"].components["status_box"],
            self.tabs["train_tab"].components["log_box"],
            self.tabs["train_tab"].components["start_btn"],
            self.tabs["train_tab"].components["stop_btn"]
        ]
        
        # Add delete_checkpoints_btn only if it exists
        if "delete_checkpoints_btn" in self.tabs["train_tab"].components:
            outputs.append(self.tabs["train_tab"].components["delete_checkpoints_btn"])
        else:
            # Add pause_resume_btn as fallback
            outputs.append(self.tabs["train_tab"].components["pause_resume_btn"])
        
        status_timer.tick(
            fn=self.tabs["train_tab"].get_latest_status_message_logs_and_button_labels,
            outputs=outputs
        )
        
        # Dataset refresh timer (every 5 seconds)
        dataset_timer = gr.Timer(value=5)
        dataset_timer.tick(
            fn=self.refresh_dataset,
            outputs=[
                self.tabs["split_tab"].components["video_list"],
                self.tabs["caption_tab"].components["training_dataset"]
            ]
        )
        
        # Titles update timer (every 6 seconds)
        titles_timer = gr.Timer(value=6)
        titles_timer.tick(
            fn=self.update_titles,
            outputs=[
                self.tabs["split_tab"].components["split_title"],
                self.tabs["caption_tab"].components["caption_title"],
                self.tabs["train_tab"].components["train_title"]
            ]
        )
    
    def initialize_app_state(self):
        """Initialize all app state in one function to ensure correct output count"""
        # Get dataset info
        video_list = self.tabs["split_tab"].list_unprocessed_videos()
        training_dataset = self.tabs["caption_tab"].list_training_files_to_caption()
        
        # Get button states based on recovery status
        button_states = self.get_initial_button_states()
        start_btn = button_states[0]
        stop_btn = button_states[1]
        delete_checkpoints_btn = button_states[2]  # This replaces pause_resume_btn in the response tuple
        
        # Get UI form values - possibly from the recovery
        if self.recovery_status in ["recovered", "ready_to_recover", "running"] and "ui_updates" in self.state["recovery_result"]:
            recovery_ui = self.state["recovery_result"]["ui_updates"]
            
            # If we recovered training parameters from the original session
            ui_state = {}
            
            # Handle model_type specifically - could be internal or display name
            if "model_type" in recovery_ui:
                model_type_value = recovery_ui["model_type"]
                
                # If it's an internal name, convert to display name
                if model_type_value not in MODEL_TYPES:
                    # Find the display name for this internal model type
                    for display_name, internal_name in MODEL_TYPES.items():
                        if internal_name == model_type_value:
                            model_type_value = display_name
                            logger.info(f"Converted internal model type '{recovery_ui['model_type']}' to display name '{model_type_value}'")
                            break
                
                ui_state["model_type"] = model_type_value
            
            # Copy other parameters
            for param in ["lora_rank", "lora_alpha", "num_epochs", 
                          "batch_size", "learning_rate", "save_iterations", "training_preset"]:
                if param in recovery_ui:
                    ui_state[param] = recovery_ui[param]
            
            # Merge with existing UI state if needed
            if ui_state:
                current_state = self.load_ui_values()
                current_state.update(ui_state)
                self.trainer.save_ui_state(current_state)
                logger.info(f"Updated UI state from recovery: {ui_state}")
        
        # Load values (potentially with recovery updates applied)
        ui_state = self.load_ui_values()
        
        # Ensure model_type is a display name, not internal name
        model_type_val = ui_state.get("model_type", list(MODEL_TYPES.keys())[0])
        if model_type_val not in MODEL_TYPES:
            # Convert from internal to display name
            for display_name, internal_name in MODEL_TYPES.items():
                if internal_name == model_type_val:
                    model_type_val = display_name
                    break
        
        training_preset = ui_state.get("training_preset", list(TRAINING_PRESETS.keys())[0])
        lora_rank_val = ui_state.get("lora_rank", "128")
        lora_alpha_val = ui_state.get("lora_alpha", "128")
        num_epochs_val = int(ui_state.get("num_epochs", 70))
        batch_size_val = int(ui_state.get("batch_size", 1))
        learning_rate_val = float(ui_state.get("learning_rate", 3e-5))
        save_iterations_val = int(ui_state.get("save_iterations", 500))
        
        # Return all values in the exact order expected by outputs
        return (
            video_list, 
            training_dataset,
            start_btn, 
            stop_btn, 
            delete_checkpoints_btn,
            training_preset, 
            model_type_val,
            lora_rank_val, 
            lora_alpha_val,
            num_epochs_val, 
            batch_size_val, 
            learning_rate_val, 
            save_iterations_val
        )

    def initialize_ui_from_state(self):
        """Initialize UI components from saved state"""
        ui_state = self.load_ui_values()
        
        # Return values in order matching the outputs in app.load
        return (
            ui_state.get("training_preset", list(TRAINING_PRESETS.keys())[0]),
            ui_state.get("model_type", list(MODEL_TYPES.keys())[0]),
            ui_state.get("lora_rank", "128"),
            ui_state.get("lora_alpha", "128"),
            ui_state.get("num_epochs", 70),
            ui_state.get("batch_size", 1),
            ui_state.get("learning_rate", 3e-5),
            ui_state.get("save_iterations", 500)
        )

    def update_ui_state(self, **kwargs):
        """Update UI state with new values"""
        current_state = self.trainer.load_ui_state()
        current_state.update(kwargs)
        self.trainer.save_ui_state(current_state)
        # Don't return anything to avoid Gradio warnings
        return None

    def load_ui_values(self):
        """Load UI state values for initializing form fields"""
        ui_state = self.trainer.load_ui_state()
        
        # Ensure proper type conversion for numeric values
        ui_state["lora_rank"] = ui_state.get("lora_rank", "128")
        ui_state["lora_alpha"] = ui_state.get("lora_alpha", "128")
        ui_state["num_epochs"] = int(ui_state.get("num_epochs", 70))
        ui_state["batch_size"] = int(ui_state.get("batch_size", 1))
        ui_state["learning_rate"] = float(ui_state.get("learning_rate", 3e-5))
        ui_state["save_iterations"] = int(ui_state.get("save_iterations", 500))
        
        return ui_state

    # Add this new method to get initial button states:
    def get_initial_button_states(self):
        """Get the initial states for training buttons based on recovery status"""
        recovery_result = self.state.get("recovery_result") or self.trainer.recover_interrupted_training()
        ui_updates = recovery_result.get("ui_updates", {})
        
        # Check for checkpoints to determine start button text
        has_checkpoints = len(list(OUTPUT_PATH.glob("checkpoint-*"))) > 0
        
        # Default button states if recovery didn't provide any
        if not ui_updates or not ui_updates.get("start_btn"):
            is_training = self.trainer.is_training_running()
            
            if is_training:
                # Active training detected
                start_btn_props = {"interactive": False, "variant": "secondary", "value": "Continue Training" if has_checkpoints else "Start Training"}
                stop_btn_props = {"interactive": True, "variant": "primary", "value": "Stop at Last Checkpoint"}
                delete_btn_props = {"interactive": False, "variant": "stop", "value": "Delete All Checkpoints"}
            else:
                # No active training
                start_btn_props = {"interactive": True, "variant": "primary", "value": "Continue Training" if has_checkpoints else "Start Training"}
                stop_btn_props = {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"}
                delete_btn_props = {"interactive": has_checkpoints, "variant": "stop", "value": "Delete All Checkpoints"}
        else:
            # Use button states from recovery
            start_btn_props = ui_updates.get("start_btn", {"interactive": True, "variant": "primary", "value": "Start Training"})
            stop_btn_props = ui_updates.get("stop_btn", {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"})
            delete_btn_props = ui_updates.get("delete_checkpoints_btn", {"interactive": has_checkpoints, "variant": "stop", "value": "Delete All Checkpoints"})
        
        # Return button states in the correct order
        return (
            gr.Button(**start_btn_props),
            gr.Button(**stop_btn_props),
            gr.Button(**delete_btn_props)
        )
      
    def update_titles(self) -> Tuple[Any]:
        """Update all dynamic titles with current counts
        
        Returns:
            Dict of Gradio updates
        """
        # Count files for splitting
        split_videos, _, split_size = count_media_files(VIDEOS_TO_SPLIT_PATH)
        split_title = format_media_title(
            "split", split_videos, 0, split_size
        )
        
        # Count files for captioning
        caption_videos, caption_images, caption_size = count_media_files(STAGING_PATH)
        caption_title = format_media_title(
            "caption", caption_videos, caption_images, caption_size
        )
        
        # Count files for training
        train_videos, train_images, train_size = count_media_files(TRAINING_VIDEOS_PATH)
        train_title = format_media_title(
            "train", train_videos, train_images, train_size
        )
        
        return (
            gr.Markdown(value=split_title),
            gr.Markdown(value=caption_title),
            gr.Markdown(value=f"{train_title} available for training")
        )
    
    def refresh_dataset(self):
        """Refresh all dynamic lists and training state"""
        video_list = self.tabs["split_tab"].list_unprocessed_videos()
        training_dataset = self.tabs["caption_tab"].list_training_files_to_caption()

        return (
            video_list,
            training_dataset
        )