Spaces:
Running
Running
File size: 15,324 Bytes
0ad7e2a c8589f9 64a70c0 0ad7e2a 64a70c0 0ad7e2a 66c6879 0ad7e2a 64a70c0 0ad7e2a 892fa67 0ad7e2a 892fa67 0ad7e2a adc5756 0ad7e2a 64a70c0 adc5756 0ad7e2a 64a70c0 0ad7e2a 892fa67 0ad7e2a 892fa67 c8589f9 892fa67 0ad7e2a 892fa67 0ad7e2a 892fa67 c8589f9 0ad7e2a c8589f9 0ad7e2a c8589f9 0ad7e2a c8589f9 0ad7e2a 892fa67 0ad7e2a 892fa67 0ad7e2a 892fa67 0ad7e2a 892fa67 0ad7e2a 64a70c0 0ad7e2a 64a70c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
import platform
import gradio as gr
from pathlib import Path
import logging
import asyncio
from typing import Any, Optional, Dict, List, Union, Tuple
from ..services import TrainingService, CaptioningService, SplittingService, ImportService
from ..config import (
STORAGE_PATH, VIDEOS_TO_SPLIT_PATH, STAGING_PATH, OUTPUT_PATH,
TRAINING_PATH, LOG_FILE_PATH, TRAINING_PRESETS, TRAINING_VIDEOS_PATH, MODEL_PATH, OUTPUT_PATH,
MODEL_TYPES, SMALL_TRAINING_BUCKETS
)
from ..utils import count_media_files, format_media_title, TrainingLogParser
from ..tabs import ImportTab, SplitTab, CaptionTab, TrainTab, ManageTab
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
httpx_logger = logging.getLogger('httpx')
httpx_logger.setLevel(logging.WARN)
class VideoTrainerUI:
def __init__(self):
"""Initialize services and tabs"""
# Initialize core services
self.trainer = TrainingService()
self.splitter = SplittingService()
self.importer = ImportService()
self.captioner = CaptioningService()
# Recovery status from any interrupted training
recovery_result = self.trainer.recover_interrupted_training()
# Add null check for recovery_result
if recovery_result is None:
recovery_result = {"status": "unknown", "ui_updates": {}}
self.recovery_status = recovery_result.get("status", "unknown")
self.ui_updates = recovery_result.get("ui_updates", {})
# Initialize log parser
self.log_parser = TrainingLogParser()
# Shared state for tabs
self.state = {
"recovery_result": recovery_result
}
# Initialize tabs dictionary (will be populated in create_ui)
self.tabs = {}
self.tabs_component = None
# Log recovery status
logger.info(f"Initialization complete. Recovery status: {self.recovery_status}")
def create_ui(self):
"""Create the main Gradio UI"""
with gr.Blocks(title="🎥 Video Model Studio") as app:
gr.Markdown("# 🎥 Video Model Studio")
# Create main tabs component
with gr.Tabs() as self.tabs_component:
# Initialize tab objects
self.tabs["import_tab"] = ImportTab(self)
self.tabs["split_tab"] = SplitTab(self)
self.tabs["caption_tab"] = CaptionTab(self)
self.tabs["train_tab"] = TrainTab(self)
self.tabs["manage_tab"] = ManageTab(self)
# Create tab UI components
for tab_id, tab_obj in self.tabs.items():
tab_obj.create(self.tabs_component)
# Connect event handlers
for tab_id, tab_obj in self.tabs.items():
tab_obj.connect_events()
# Add app-level timers for auto-refresh functionality
self._add_timers()
# Initialize app state on load
app.load(
fn=self.initialize_app_state,
outputs=[
self.tabs["split_tab"].components["video_list"],
self.tabs["caption_tab"].components["training_dataset"],
self.tabs["train_tab"].components["start_btn"],
self.tabs["train_tab"].components["stop_btn"],
self.tabs["train_tab"].components["pause_resume_btn"],
self.tabs["train_tab"].components["training_preset"],
self.tabs["train_tab"].components["model_type"],
self.tabs["train_tab"].components["lora_rank"],
self.tabs["train_tab"].components["lora_alpha"],
self.tabs["train_tab"].components["num_epochs"],
self.tabs["train_tab"].components["batch_size"],
self.tabs["train_tab"].components["learning_rate"],
self.tabs["train_tab"].components["save_iterations"]
]
)
return app
def _add_timers(self):
"""Add auto-refresh timers to the UI"""
# Status update timer (every 1 second)
status_timer = gr.Timer(value=1)
# Use a safer approach - check if the component exists before using it
outputs = [
self.tabs["train_tab"].components["status_box"],
self.tabs["train_tab"].components["log_box"],
self.tabs["train_tab"].components["start_btn"],
self.tabs["train_tab"].components["stop_btn"]
]
# Add delete_checkpoints_btn only if it exists
if "delete_checkpoints_btn" in self.tabs["train_tab"].components:
outputs.append(self.tabs["train_tab"].components["delete_checkpoints_btn"])
else:
# Add pause_resume_btn as fallback
outputs.append(self.tabs["train_tab"].components["pause_resume_btn"])
status_timer.tick(
fn=self.tabs["train_tab"].get_latest_status_message_logs_and_button_labels,
outputs=outputs
)
# Dataset refresh timer (every 5 seconds)
dataset_timer = gr.Timer(value=5)
dataset_timer.tick(
fn=self.refresh_dataset,
outputs=[
self.tabs["split_tab"].components["video_list"],
self.tabs["caption_tab"].components["training_dataset"]
]
)
# Titles update timer (every 6 seconds)
titles_timer = gr.Timer(value=6)
titles_timer.tick(
fn=self.update_titles,
outputs=[
self.tabs["split_tab"].components["split_title"],
self.tabs["caption_tab"].components["caption_title"],
self.tabs["train_tab"].components["train_title"]
]
)
def initialize_app_state(self):
"""Initialize all app state in one function to ensure correct output count"""
# Get dataset info
video_list = self.tabs["split_tab"].list_unprocessed_videos()
training_dataset = self.tabs["caption_tab"].list_training_files_to_caption()
# Get button states based on recovery status
button_states = self.get_initial_button_states()
start_btn = button_states[0]
stop_btn = button_states[1]
delete_checkpoints_btn = button_states[2] # This replaces pause_resume_btn in the response tuple
# Get UI form values - possibly from the recovery
if self.recovery_status in ["recovered", "ready_to_recover", "running"] and "ui_updates" in self.state["recovery_result"]:
recovery_ui = self.state["recovery_result"]["ui_updates"]
# If we recovered training parameters from the original session
ui_state = {}
# Handle model_type specifically - could be internal or display name
if "model_type" in recovery_ui:
model_type_value = recovery_ui["model_type"]
# If it's an internal name, convert to display name
if model_type_value not in MODEL_TYPES:
# Find the display name for this internal model type
for display_name, internal_name in MODEL_TYPES.items():
if internal_name == model_type_value:
model_type_value = display_name
logger.info(f"Converted internal model type '{recovery_ui['model_type']}' to display name '{model_type_value}'")
break
ui_state["model_type"] = model_type_value
# Copy other parameters
for param in ["lora_rank", "lora_alpha", "num_epochs",
"batch_size", "learning_rate", "save_iterations", "training_preset"]:
if param in recovery_ui:
ui_state[param] = recovery_ui[param]
# Merge with existing UI state if needed
if ui_state:
current_state = self.load_ui_values()
current_state.update(ui_state)
self.trainer.save_ui_state(current_state)
logger.info(f"Updated UI state from recovery: {ui_state}")
# Load values (potentially with recovery updates applied)
ui_state = self.load_ui_values()
# Ensure model_type is a display name, not internal name
model_type_val = ui_state.get("model_type", list(MODEL_TYPES.keys())[0])
if model_type_val not in MODEL_TYPES:
# Convert from internal to display name
for display_name, internal_name in MODEL_TYPES.items():
if internal_name == model_type_val:
model_type_val = display_name
break
training_preset = ui_state.get("training_preset", list(TRAINING_PRESETS.keys())[0])
lora_rank_val = ui_state.get("lora_rank", "128")
lora_alpha_val = ui_state.get("lora_alpha", "128")
num_epochs_val = int(ui_state.get("num_epochs", 70))
batch_size_val = int(ui_state.get("batch_size", 1))
learning_rate_val = float(ui_state.get("learning_rate", 3e-5))
save_iterations_val = int(ui_state.get("save_iterations", 500))
# Return all values in the exact order expected by outputs
return (
video_list,
training_dataset,
start_btn,
stop_btn,
delete_checkpoints_btn,
training_preset,
model_type_val,
lora_rank_val,
lora_alpha_val,
num_epochs_val,
batch_size_val,
learning_rate_val,
save_iterations_val
)
def initialize_ui_from_state(self):
"""Initialize UI components from saved state"""
ui_state = self.load_ui_values()
# Return values in order matching the outputs in app.load
return (
ui_state.get("training_preset", list(TRAINING_PRESETS.keys())[0]),
ui_state.get("model_type", list(MODEL_TYPES.keys())[0]),
ui_state.get("lora_rank", "128"),
ui_state.get("lora_alpha", "128"),
ui_state.get("num_epochs", 70),
ui_state.get("batch_size", 1),
ui_state.get("learning_rate", 3e-5),
ui_state.get("save_iterations", 500)
)
def update_ui_state(self, **kwargs):
"""Update UI state with new values"""
current_state = self.trainer.load_ui_state()
current_state.update(kwargs)
self.trainer.save_ui_state(current_state)
# Don't return anything to avoid Gradio warnings
return None
def load_ui_values(self):
"""Load UI state values for initializing form fields"""
ui_state = self.trainer.load_ui_state()
# Ensure proper type conversion for numeric values
ui_state["lora_rank"] = ui_state.get("lora_rank", "128")
ui_state["lora_alpha"] = ui_state.get("lora_alpha", "128")
ui_state["num_epochs"] = int(ui_state.get("num_epochs", 70))
ui_state["batch_size"] = int(ui_state.get("batch_size", 1))
ui_state["learning_rate"] = float(ui_state.get("learning_rate", 3e-5))
ui_state["save_iterations"] = int(ui_state.get("save_iterations", 500))
return ui_state
# Add this new method to get initial button states:
def get_initial_button_states(self):
"""Get the initial states for training buttons based on recovery status"""
recovery_result = self.state.get("recovery_result") or self.trainer.recover_interrupted_training()
ui_updates = recovery_result.get("ui_updates", {})
# Check for checkpoints to determine start button text
has_checkpoints = len(list(OUTPUT_PATH.glob("checkpoint-*"))) > 0
# Default button states if recovery didn't provide any
if not ui_updates or not ui_updates.get("start_btn"):
is_training = self.trainer.is_training_running()
if is_training:
# Active training detected
start_btn_props = {"interactive": False, "variant": "secondary", "value": "Continue Training" if has_checkpoints else "Start Training"}
stop_btn_props = {"interactive": True, "variant": "primary", "value": "Stop at Last Checkpoint"}
delete_btn_props = {"interactive": False, "variant": "stop", "value": "Delete All Checkpoints"}
else:
# No active training
start_btn_props = {"interactive": True, "variant": "primary", "value": "Continue Training" if has_checkpoints else "Start Training"}
stop_btn_props = {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"}
delete_btn_props = {"interactive": has_checkpoints, "variant": "stop", "value": "Delete All Checkpoints"}
else:
# Use button states from recovery
start_btn_props = ui_updates.get("start_btn", {"interactive": True, "variant": "primary", "value": "Start Training"})
stop_btn_props = ui_updates.get("stop_btn", {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"})
delete_btn_props = ui_updates.get("delete_checkpoints_btn", {"interactive": has_checkpoints, "variant": "stop", "value": "Delete All Checkpoints"})
# Return button states in the correct order
return (
gr.Button(**start_btn_props),
gr.Button(**stop_btn_props),
gr.Button(**delete_btn_props)
)
def update_titles(self) -> Tuple[Any]:
"""Update all dynamic titles with current counts
Returns:
Dict of Gradio updates
"""
# Count files for splitting
split_videos, _, split_size = count_media_files(VIDEOS_TO_SPLIT_PATH)
split_title = format_media_title(
"split", split_videos, 0, split_size
)
# Count files for captioning
caption_videos, caption_images, caption_size = count_media_files(STAGING_PATH)
caption_title = format_media_title(
"caption", caption_videos, caption_images, caption_size
)
# Count files for training
train_videos, train_images, train_size = count_media_files(TRAINING_VIDEOS_PATH)
train_title = format_media_title(
"train", train_videos, train_images, train_size
)
return (
gr.Markdown(value=split_title),
gr.Markdown(value=caption_title),
gr.Markdown(value=f"{train_title} available for training")
)
def refresh_dataset(self):
"""Refresh all dynamic lists and training state"""
video_list = self.tabs["split_tab"].list_unprocessed_videos()
training_dataset = self.tabs["caption_tab"].list_training_files_to_caption()
return (
video_list,
training_dataset
) |