Spaces:
Running
Running
File size: 69,046 Bytes
91fb4ef 61a25f0 91fb4ef e386f72 89bbef2 d464085 d2662cc c6546ad 7c52128 0d34ea8 7c52128 89bbef2 7c52128 d464085 91fb4ef d2662cc 91fb4ef 1042322 91fb4ef 947f205 61a25f0 947f205 0ad7e2a 947f205 91fb4ef 54a2a4e 947f205 54a2a4e 7c52128 54a2a4e 7c52128 61a25f0 0d34ea8 61a25f0 7c52128 61a25f0 7c52128 61a25f0 7c52128 61a25f0 54a2a4e 7c52128 54a2a4e 7c52128 54a2a4e d2662cc d464085 c6546ad 7c52128 0d34ea8 54a2a4e 61a25f0 0ad7e2a 61a25f0 7c52128 61a25f0 7c52128 61a25f0 743eda6 61a25f0 d2662cc 61a25f0 c6546ad 61a25f0 7c52128 61a25f0 7c52128 61a25f0 54a2a4e 0ad7e2a 7c52128 0d34ea8 7c52128 0d34ea8 7c52128 0ad7e2a 7c52128 0ad7e2a 7c52128 0ad7e2a 7c52128 54a2a4e 91fb4ef 54a2a4e 91fb4ef 54a2a4e 91fb4ef 4905a7d 91fb4ef 446e79f 91fb4ef 446e79f 91fb4ef 947f205 446e79f 4905a7d 91fb4ef 446e79f 91fb4ef 4905a7d 91fb4ef 446e79f 91fb4ef 29d6f3c 91fb4ef 29d6f3c 91fb4ef 29d6f3c 91fb4ef 29d6f3c 91fb4ef 29d6f3c 91fb4ef d464085 91fb4ef 29d6f3c 91fb4ef 29d6f3c f407698 c6546ad f407698 7c52128 d2662cc 54a2a4e 7c52128 f407698 91fb4ef adc5756 91fb4ef d464085 91fb4ef 892fa67 d464085 91fb4ef 7c52128 1042322 7c52128 91fb4ef adc5756 91fb4ef adc5756 91fb4ef adc5756 91fb4ef 7c52128 1042322 91fb4ef 7c52128 1042322 7c52128 892fa67 c90af3c d464085 c90af3c 7c52128 1042322 7c52128 29d6f3c 7c52128 29d6f3c 7c52128 29d6f3c 7c52128 29d6f3c c90af3c 91fb4ef d464085 c90af3c 7c52128 91fb4ef c6546ad 91fb4ef d464085 7c52128 1042322 7c52128 29d6f3c d464085 91fb4ef 54a2a4e 3bdc963 54a2a4e 91fb4ef 7c52128 c6546ad 91fb4ef c6546ad 91fb4ef 1042322 91fb4ef 29d6f3c 91fb4ef 29d6f3c 7c52128 29d6f3c 7c52128 29d6f3c 7c52128 29d6f3c 7c52128 29d6f3c 91fb4ef 7c52128 1042322 7c52128 91fb4ef 29d6f3c 91fb4ef d2662cc d464085 91fb4ef c6546ad 91fb4ef 7c52128 91fb4ef c6546ad 91fb4ef 947f205 91fb4ef d464085 91fb4ef d464085 91fb4ef 7c52128 1042322 7c52128 91fb4ef 892fa67 91fb4ef 892fa67 91fb4ef 947f205 91fb4ef 54a2a4e 91fb4ef 54a2a4e 66c6879 54a2a4e 66c6879 54a2a4e 66c6879 a3e57a3 66c6879 892fa67 66c6879 d2662cc d464085 c6546ad 66c6879 0328e32 f1c60d3 66c6879 c8589f9 66c6879 a3e57a3 66c6879 a3e57a3 66c6879 ac45732 892fa67 66c6879 54a2a4e 892fa67 c8589f9 892fa67 54a2a4e 66c6879 d464085 66c6879 d2662cc c6546ad 0d34ea8 f1c60d3 66c6879 0d34ea8 66c6879 6e3431d c6546ad 0567ba0 c6546ad d2662cc 66c6879 d464085 33aa941 66c6879 c47044e 66c6879 d2662cc 66c6879 c47044e 66c6879 c47044e 66c6879 54a2a4e c47044e 892fa67 66c6879 54a2a4e c47044e 54a2a4e 892fa67 66c6879 54a2a4e 66c6879 892fa67 54a2a4e 892fa67 a3e57a3 892fa67 91fb4ef 4905a7d 91fb4ef 1b19314 947f205 98d3630 947f205 91fb4ef 7c52128 91fb4ef 7c52128 61a19ec 91fb4ef 26cd6a4 91fb4ef d464085 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 |
import os
import sys
import json
import time
import shutil
import gradio as gr
from pathlib import Path
from datetime import datetime
import subprocess
import signal
import psutil
import tempfile
import zipfile
import logging
import traceback
import threading
import fcntl
import select
from typing import Any, Optional, Dict, List, Union, Tuple
from huggingface_hub import upload_folder, create_repo
from vms.config import (
TrainingConfig, TRAINING_PRESETS, LOG_FILE_PATH, TRAINING_VIDEOS_PATH,
STORAGE_PATH, TRAINING_PATH, MODEL_PATH, OUTPUT_PATH, HF_API_TOKEN,
MODEL_TYPES, TRAINING_TYPES, MODEL_VERSIONS,
DEFAULT_NB_TRAINING_STEPS, DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS,
DEFAULT_BATCH_SIZE, DEFAULT_CAPTION_DROPOUT_P,
DEFAULT_LEARNING_RATE,
DEFAULT_LORA_RANK, DEFAULT_LORA_ALPHA,
DEFAULT_LORA_RANK_STR, DEFAULT_LORA_ALPHA_STR,
DEFAULT_SEED, DEFAULT_RESHAPE_MODE,
DEFAULT_REMOVE_COMMON_LLM_CAPTION_PREFIXES,
DEFAULT_DATASET_TYPE, DEFAULT_PROMPT_PREFIX,
DEFAULT_MIXED_PRECISION, DEFAULT_TRAINING_TYPE,
DEFAULT_NUM_GPUS,
DEFAULT_MAX_GPUS,
DEFAULT_PRECOMPUTATION_ITEMS,
DEFAULT_NB_TRAINING_STEPS,
DEFAULT_NB_LR_WARMUP_STEPS,
DEFAULT_AUTO_RESUME
)
from vms.utils import (
get_available_gpu_count,
make_archive,
parse_training_log,
is_image_file,
is_video_file,
prepare_finetrainers_dataset,
copy_files_to_training_dir
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
class TrainingService:
def __init__(self, app=None):
# Store reference to app
self.app = app
# State and log files
self.session_file = OUTPUT_PATH / "session.json"
self.status_file = OUTPUT_PATH / "status.json"
self.pid_file = OUTPUT_PATH / "training.pid"
self.log_file = OUTPUT_PATH / "training.log"
self.file_lock = threading.Lock()
self.file_handler = None
self.setup_logging()
self.ensure_valid_ui_state_file()
logger.info("Training service initialized")
def setup_logging(self):
"""Set up logging with proper handler management"""
global logger
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# Remove any existing handlers to avoid duplicates
logger.handlers.clear()
# Add stdout handler
stdout_handler = logging.StreamHandler(sys.stdout)
stdout_handler.setFormatter(logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
))
logger.addHandler(stdout_handler)
# Add file handler if log file is accessible
try:
# Close existing file handler if it exists
if self.file_handler:
self.file_handler.close()
logger.removeHandler(self.file_handler)
self.file_handler = logging.FileHandler(str(LOG_FILE_PATH))
self.file_handler.setFormatter(logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
))
logger.addHandler(self.file_handler)
except Exception as e:
logger.warning(f"Could not set up log file: {e}")
def clear_logs(self) -> None:
"""Clear log file with proper handler cleanup"""
try:
# Remove and close the file handler
if self.file_handler:
logger.removeHandler(self.file_handler)
self.file_handler.close()
self.file_handler = None
# Delete the file if it exists
if LOG_FILE_PATH.exists():
LOG_FILE_PATH.unlink()
# Recreate logging setup
self.setup_logging()
self.append_log("Log file cleared and recreated")
except Exception as e:
logger.error(f"Error clearing logs: {e}")
raise
def __del__(self):
"""Cleanup when the service is destroyed"""
if self.file_handler:
self.file_handler.close()
def save_ui_state(self, values: Dict[str, Any]) -> None:
"""Save current UI state to file with validation"""
ui_state_file = OUTPUT_PATH / "ui_state.json"
# Use a lock to prevent concurrent writes
with self.file_lock:
# Validate values before saving
validated_values = {}
default_state = {
"model_type": list(MODEL_TYPES.keys())[0],
"model_version": "",
"training_type": list(TRAINING_TYPES.keys())[0],
"lora_rank": DEFAULT_LORA_RANK_STR,
"lora_alpha": DEFAULT_LORA_ALPHA_STR,
"train_steps": DEFAULT_NB_TRAINING_STEPS,
"batch_size": DEFAULT_BATCH_SIZE,
"learning_rate": DEFAULT_LEARNING_RATE,
"save_iterations": DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS,
"training_preset": list(TRAINING_PRESETS.keys())[0],
"num_gpus": DEFAULT_NUM_GPUS,
"precomputation_items": DEFAULT_PRECOMPUTATION_ITEMS,
"lr_warmup_steps": DEFAULT_NB_LR_WARMUP_STEPS,
"auto_resume": False
}
# Copy default values first
validated_values = default_state.copy()
# Update with provided values, converting types as needed
for key, value in values.items():
if key in default_state:
if key == "train_steps":
try:
validated_values[key] = int(value)
except (ValueError, TypeError):
validated_values[key] = default_state[key]
elif key == "batch_size":
try:
validated_values[key] = int(value)
except (ValueError, TypeError):
validated_values[key] = default_state[key]
elif key == "learning_rate":
try:
validated_values[key] = float(value)
except (ValueError, TypeError):
validated_values[key] = default_state[key]
elif key == "save_iterations":
try:
validated_values[key] = int(value)
except (ValueError, TypeError):
validated_values[key] = default_state[key]
elif key == "lora_rank" and value not in ["16", "32", "64", "128", "256", "512", "1024"]:
validated_values[key] = default_state[key]
elif key == "lora_alpha" and value not in ["16", "32", "64", "128", "256", "512", "1024"]:
validated_values[key] = default_state[key]
else:
validated_values[key] = value
try:
# First verify we can serialize to JSON
json_data = json.dumps(validated_values, indent=2)
# Write to the file
with open(ui_state_file, 'w') as f:
f.write(json_data)
logger.debug(f"UI state saved successfully")
except Exception as e:
logger.error(f"Error saving UI state: {str(e)}")
def _backup_and_recreate_ui_state(self, ui_state_file, default_state):
"""Backup the corrupted UI state file and create a new one with defaults"""
try:
# Create a backup with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
backup_file = ui_state_file.with_suffix(f'.json.bak_{timestamp}')
# Copy the corrupted file
shutil.copy2(ui_state_file, backup_file)
logger.info(f"Backed up corrupted UI state file to {backup_file}")
except Exception as backup_error:
logger.error(f"Failed to backup corrupted UI state file: {str(backup_error)}")
# Create a new file with default values
self.save_ui_state(default_state)
logger.info("Created new UI state file with default values after error")
def load_ui_state(self) -> Dict[str, Any]:
"""Load saved UI state with robust error handling"""
ui_state_file = OUTPUT_PATH / "ui_state.json"
default_state = {
"model_type": list(MODEL_TYPES.keys())[0],
"model_version": "",
"training_type": list(TRAINING_TYPES.keys())[0],
"lora_rank": DEFAULT_LORA_RANK_STR,
"lora_alpha": DEFAULT_LORA_ALPHA_STR,
"train_steps": DEFAULT_NB_TRAINING_STEPS,
"batch_size": DEFAULT_BATCH_SIZE,
"learning_rate": DEFAULT_LEARNING_RATE,
"save_iterations": DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS,
"training_preset": list(TRAINING_PRESETS.keys())[0],
"num_gpus": DEFAULT_NUM_GPUS,
"precomputation_items": DEFAULT_PRECOMPUTATION_ITEMS,
"lr_warmup_steps": DEFAULT_NB_LR_WARMUP_STEPS,
"auto_resume": DEFAULT_AUTO_RESUME
}
# Use lock for reading too to avoid reading during a write
with self.file_lock:
if not ui_state_file.exists():
logger.info("UI state file does not exist, using default values")
return default_state
try:
# First check if the file is empty
file_size = ui_state_file.stat().st_size
if file_size == 0:
logger.warning("UI state file exists but is empty, using default values")
return default_state
with open(ui_state_file, 'r') as f:
file_content = f.read().strip()
if not file_content:
logger.warning("UI state file is empty or contains only whitespace, using default values")
return default_state
try:
saved_state = json.loads(file_content)
except json.JSONDecodeError as e:
logger.error(f"Error parsing UI state JSON: {str(e)}")
# Instead of showing the error, recreate the file with defaults
self._backup_and_recreate_ui_state(ui_state_file, default_state)
return default_state
# Clean up model type if it contains " (LoRA)" suffix
if "model_type" in saved_state and " (LoRA)" in saved_state["model_type"]:
saved_state["model_type"] = saved_state["model_type"].replace(" (LoRA)", "")
logger.info(f"Removed (LoRA) suffix from saved model type: {saved_state['model_type']}")
# Convert numeric values to appropriate types
if "train_steps" in saved_state:
try:
saved_state["train_steps"] = int(saved_state["train_steps"])
except (ValueError, TypeError):
saved_state["train_steps"] = default_state["train_steps"]
logger.warning("Invalid train_steps value, using default")
if "batch_size" in saved_state:
try:
saved_state["batch_size"] = int(saved_state["batch_size"])
except (ValueError, TypeError):
saved_state["batch_size"] = default_state["batch_size"]
logger.warning("Invalid batch_size value, using default")
if "learning_rate" in saved_state:
try:
saved_state["learning_rate"] = float(saved_state["learning_rate"])
except (ValueError, TypeError):
saved_state["learning_rate"] = default_state["learning_rate"]
logger.warning("Invalid learning_rate value, using default")
if "save_iterations" in saved_state:
try:
saved_state["save_iterations"] = int(saved_state["save_iterations"])
except (ValueError, TypeError):
saved_state["save_iterations"] = default_state["save_iterations"]
logger.warning("Invalid save_iterations value, using default")
# Make sure we have all keys (in case structure changed)
merged_state = default_state.copy()
merged_state.update({k: v for k, v in saved_state.items() if v is not None})
# Validate model_type is in available choices
if merged_state["model_type"] not in MODEL_TYPES:
# Try to map from internal name
model_found = False
for display_name, internal_name in MODEL_TYPES.items():
if internal_name == merged_state["model_type"]:
merged_state["model_type"] = display_name
model_found = True
break
# If still not found, use default
if not model_found:
merged_state["model_type"] = default_state["model_type"]
logger.warning(f"Invalid model type in saved state, using default")
# Validate model_version is appropriate for model_type
if "model_type" in merged_state and "model_version" in merged_state:
model_internal_type = MODEL_TYPES.get(merged_state["model_type"])
if model_internal_type:
valid_versions = MODEL_VERSIONS.get(model_internal_type, {}).keys()
if merged_state["model_version"] not in valid_versions:
# Set to default for this model type
from vms.ui.project.tabs.train_tab import TrainTab
train_tab = TrainTab(None) # Temporary instance just for the helper method
merged_state["model_version"] = train_tab.get_default_model_version(saved_state["model_type"])
logger.warning(f"Invalid model version for {merged_state['model_type']}, using default")
# Validate training_type is in available choices
if merged_state["training_type"] not in TRAINING_TYPES:
# Try to map from internal name
training_found = False
for display_name, internal_name in TRAINING_TYPES.items():
if internal_name == merged_state["training_type"]:
merged_state["training_type"] = display_name
training_found = True
break
# If still not found, use default
if not training_found:
merged_state["training_type"] = default_state["training_type"]
logger.warning(f"Invalid training type in saved state, using default")
# Validate training_preset is in available choices
if merged_state["training_preset"] not in TRAINING_PRESETS:
merged_state["training_preset"] = default_state["training_preset"]
logger.warning(f"Invalid training preset in saved state, using default")
# Validate lora_rank is in allowed values
if merged_state.get("lora_rank") not in ["16", "32", "64", "128", "256", "512", "1024"]:
merged_state["lora_rank"] = default_state["lora_rank"]
logger.warning(f"Invalid lora_rank in saved state, using default")
# Validate lora_alpha is in allowed values
if merged_state.get("lora_alpha") not in ["16", "32", "64", "128", "256", "512", "1024"]:
merged_state["lora_alpha"] = default_state["lora_alpha"]
logger.warning(f"Invalid lora_alpha in saved state, using default")
return merged_state
except Exception as e:
logger.error(f"Error loading UI state: {str(e)}")
# If anything goes wrong, backup and recreate
self._backup_and_recreate_ui_state(ui_state_file, default_state)
return default_state
def ensure_valid_ui_state_file(self):
"""Ensure UI state file exists and is valid JSON"""
ui_state_file = OUTPUT_PATH / "ui_state.json"
# Default state with all required values
default_state = {
"model_type": list(MODEL_TYPES.keys())[0],
"model_version": "",
"training_type": list(TRAINING_TYPES.keys())[0],
"lora_rank": DEFAULT_LORA_RANK_STR,
"lora_alpha": DEFAULT_LORA_ALPHA_STR,
"train_steps": DEFAULT_NB_TRAINING_STEPS,
"batch_size": DEFAULT_BATCH_SIZE,
"learning_rate": DEFAULT_LEARNING_RATE,
"save_iterations": DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS,
"training_preset": list(TRAINING_PRESETS.keys())[0],
"num_gpus": DEFAULT_NUM_GPUS,
"precomputation_items": DEFAULT_PRECOMPUTATION_ITEMS,
"lr_warmup_steps": DEFAULT_NB_LR_WARMUP_STEPS,
"auto_resume": False
}
# If file doesn't exist, create it with default values
if not ui_state_file.exists():
logger.info("Creating new UI state file with default values")
self.save_ui_state(default_state)
return
# Check if file is valid JSON
try:
# First check if the file is empty
file_size = ui_state_file.stat().st_size
if file_size == 0:
logger.warning("UI state file exists but is empty, recreating with default values")
self.save_ui_state(default_state)
return
with open(ui_state_file, 'r') as f:
file_content = f.read().strip()
if not file_content:
logger.warning("UI state file is empty or contains only whitespace, recreating with default values")
self.save_ui_state(default_state)
return
# Try to parse the JSON content
try:
saved_state = json.loads(file_content)
logger.debug("UI state file validation successful")
except json.JSONDecodeError as e:
# JSON parsing failed, backup and recreate
logger.error(f"Error parsing UI state JSON: {str(e)}")
self._backup_and_recreate_ui_state(ui_state_file, default_state)
return
except Exception as e:
# Any other error (file access, etc)
logger.error(f"Error checking UI state file: {str(e)}")
self._backup_and_recreate_ui_state(ui_state_file, default_state)
return
# Modify save_session to also store the UI state at training start
def save_session(self, params: Dict) -> None:
"""Save training session parameters"""
session_data = {
"timestamp": datetime.now().isoformat(),
"params": params,
"status": self.get_status(),
# Add UI state at the time training started
"initial_ui_state": self.load_ui_state()
}
with open(self.session_file, 'w') as f:
json.dump(session_data, f, indent=2)
def load_session(self) -> Optional[Dict]:
"""Load saved training session"""
if self.session_file.exists():
try:
with open(self.session_file, 'r') as f:
return json.load(f)
except json.JSONDecodeError:
return None
return None
def get_status(self) -> Dict:
"""Get current training status"""
default_status = {'status': 'stopped', 'message': 'No training in progress'}
if not self.status_file.exists():
return default_status
try:
with open(self.status_file, 'r') as f:
status = json.load(f)
# Check if process is actually running
if self.pid_file.exists():
with open(self.pid_file, 'r') as f:
pid = int(f.read().strip())
if not psutil.pid_exists(pid):
# Process died unexpectedly
if status['status'] == 'training':
# Only log this once by checking if we've already updated the status
if not hasattr(self, '_process_terminated_logged') or not self._process_terminated_logged:
self.append_log("Training process terminated unexpectedly")
self._process_terminated_logged = True
status['status'] = 'error'
status['message'] = 'Training process terminated unexpectedly'
# Update the status file to avoid repeated logging
with open(self.status_file, 'w') as f:
json.dump(status, f, indent=2)
else:
status['status'] = 'stopped'
status['message'] = 'Training process not found'
return status
except (json.JSONDecodeError, ValueError):
return default_status
def get_logs(self, max_lines: int = 100) -> str:
"""Get training logs with line limit"""
if self.log_file.exists():
with open(self.log_file, 'r') as f:
lines = f.readlines()
return ''.join(lines[-max_lines:])
return ""
def append_log(self, message: str) -> None:
"""Append message to log file and logger"""
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
with open(self.log_file, 'a') as f:
f.write(f"[{timestamp}] {message}\n")
logger.info(message)
def clear_logs(self) -> None:
"""Clear log file"""
if self.log_file.exists():
self.log_file.unlink()
self.append_log("Log file cleared")
def validate_training_config(self, config: TrainingConfig, model_type: str) -> Optional[str]:
"""Validate training configuration"""
logger.info(f"Validating config for {model_type}")
try:
# Basic validation
if not config.output_dir:
return "Output directory not specified"
# For the dataset_config validation, we now expect it to be a JSON file
dataset_config_path = Path(config.data_root)
if not dataset_config_path.exists():
return f"Dataset config file does not exist: {dataset_config_path}"
# Check the JSON file is valid
try:
with open(dataset_config_path, 'r') as f:
dataset_json = json.load(f)
# Basic validation of the JSON structure
if "datasets" not in dataset_json or not isinstance(dataset_json["datasets"], list) or len(dataset_json["datasets"]) == 0:
return "Invalid dataset config JSON: missing or empty 'datasets' array"
except json.JSONDecodeError:
return f"Invalid JSON in dataset config file: {dataset_config_path}"
except Exception as e:
return f"Error reading dataset config file: {str(e)}"
# Check training videos directory exists
if not TRAINING_VIDEOS_PATH.exists():
return f"Training videos directory does not exist: {TRAINING_VIDEOS_PATH}"
# Validate file counts
video_count = len(list(TRAINING_VIDEOS_PATH.glob('*.mp4')))
if video_count == 0:
return "No training files found"
# Model-specific validation
if model_type == "hunyuan_video":
if config.batch_size > 2:
return "Hunyuan model recommended batch size is 1-2"
if not config.gradient_checkpointing:
return "Gradient checkpointing is required for Hunyuan model"
elif model_type == "ltx_video":
if config.batch_size > 4:
return "LTX model recommended batch size is 1-4"
elif model_type == "wan":
if config.batch_size > 4:
return "Wan model recommended batch size is 1-4"
logger.info(f"Config validation passed with {video_count} training files")
return None
except Exception as e:
logger.error(f"Error during config validation: {str(e)}")
return f"Configuration validation failed: {str(e)}"
def start_training(
self,
model_type: str,
lora_rank: str,
lora_alpha: str,
train_steps: int,
batch_size: int,
learning_rate: float,
save_iterations: int,
repo_id: str,
preset_name: str,
training_type: str = DEFAULT_TRAINING_TYPE,
model_version: str = "",
resume_from_checkpoint: Optional[str] = None,
num_gpus: int = DEFAULT_NUM_GPUS,
precomputation_items: int = DEFAULT_PRECOMPUTATION_ITEMS,
lr_warmup_steps: int = DEFAULT_NB_LR_WARMUP_STEPS,
progress: Optional[gr.Progress] = None,
) -> Tuple[str, str]:
"""Start training with finetrainers"""
self.clear_logs()
if not model_type:
raise ValueError("model_type cannot be empty")
if model_type not in MODEL_TYPES.values():
raise ValueError(f"Invalid model_type: {model_type}. Must be one of {list(MODEL_TYPES.values())}")
if training_type not in TRAINING_TYPES.values():
raise ValueError(f"Invalid training_type: {training_type}. Must be one of {list(TRAINING_TYPES.values())}")
# Check if we're resuming or starting new
is_resuming = resume_from_checkpoint is not None
log_prefix = "Resuming" if is_resuming else "Initializing"
logger.info(f"{log_prefix} training with model_type={model_type}, training_type={training_type}")
# Update progress if available
#if progress:
# progress(0.15, desc="Setting up training configuration")
try:
# Get absolute paths - FIXED to look in project root instead of within vms directory
current_dir = Path(__file__).parent.parent.parent.absolute() # Go up to project root
train_script = current_dir / "train.py"
if not train_script.exists():
# Try alternative locations
alt_locations = [
current_dir.parent / "train.py", # One level up from project root
Path("/home/user/app/train.py"), # Absolute path
Path("train.py") # Current working directory
]
for alt_path in alt_locations:
if alt_path.exists():
train_script = alt_path
logger.info(f"Found train.py at alternative location: {train_script}")
break
if not train_script.exists():
error_msg = f"Training script not found at {train_script} or any alternative locations"
logger.error(error_msg)
return error_msg, "Training script not found"
# Log paths for debugging
logger.info("Current working directory: %s", current_dir)
logger.info("Training script path: %s", train_script)
logger.info("Training data path: %s", TRAINING_PATH)
# Update progress
#if progress:
# progress(0.2, desc="Preparing training dataset")
videos_file, prompts_file = prepare_finetrainers_dataset()
if videos_file is None or prompts_file is None:
error_msg = "Failed to generate training lists"
logger.error(error_msg)
return error_msg, "Training preparation failed"
video_count = sum(1 for _ in open(videos_file))
logger.info(f"Generated training lists with {video_count} files")
if video_count == 0:
error_msg = "No training files found"
logger.error(error_msg)
return error_msg, "No training data available"
# Update progress
#if progress:
# progress(0.25, desc="Creating dataset configuration")
# Get preset configuration
preset = TRAINING_PRESETS[preset_name]
training_buckets = preset["training_buckets"]
flow_weighting_scheme = preset.get("flow_weighting_scheme", "none")
preset_training_type = preset.get("training_type", "lora")
# Get the custom prompt prefix from the tabs
custom_prompt_prefix = None
if hasattr(self, 'app') and self.app is not None:
if hasattr(self.app, 'tabs') and 'caption_tab' in self.app.tabs:
if hasattr(self.app.tabs['caption_tab'], 'components') and 'custom_prompt_prefix' in self.app.tabs['caption_tab'].components:
# Get the value and clean it
prefix = self.app.tabs['caption_tab'].components['custom_prompt_prefix'].value
if prefix:
# Clean the prefix - remove trailing comma, space or comma+space
custom_prompt_prefix = prefix.rstrip(', ')
# Create a proper dataset configuration JSON file
dataset_config_file = OUTPUT_PATH / "dataset_config.json"
# Determine appropriate ID token based on model type and custom prefix
id_token = custom_prompt_prefix # Use custom prefix as the primary id_token
# Only use default ID tokens if no custom prefix is provided
if not id_token:
id_token = DEFAULT_PROMPT_PREFIX
dataset_config = {
"datasets": [
{
"data_root": str(TRAINING_PATH),
"dataset_type": DEFAULT_DATASET_TYPE,
"id_token": id_token,
"video_resolution_buckets": [[f, h, w] for f, h, w in training_buckets],
"reshape_mode": DEFAULT_RESHAPE_MODE,
"remove_common_llm_caption_prefixes": DEFAULT_REMOVE_COMMON_LLM_CAPTION_PREFIXES,
}
]
}
# Write the dataset config to file
with open(dataset_config_file, 'w') as f:
json.dump(dataset_config, f, indent=2)
logger.info(f"Created dataset configuration file at {dataset_config_file}")
# Get config for selected model type with preset buckets
if model_type == "hunyuan_video":
if training_type == "lora":
config = TrainingConfig.hunyuan_video_lora(
data_path=str(TRAINING_PATH),
output_path=str(OUTPUT_PATH),
buckets=training_buckets
)
else:
# Hunyuan doesn't support full finetune in our UI yet
error_msg = "Full finetune is not supported for Hunyuan Video due to memory limitations"
logger.error(error_msg)
return error_msg, "Training configuration error"
elif model_type == "ltx_video":
if training_type == "lora":
config = TrainingConfig.ltx_video_lora(
data_path=str(TRAINING_PATH),
output_path=str(OUTPUT_PATH),
buckets=training_buckets
)
else:
config = TrainingConfig.ltx_video_full_finetune(
data_path=str(TRAINING_PATH),
output_path=str(OUTPUT_PATH),
buckets=training_buckets
)
elif model_type == "wan":
if training_type == "lora":
config = TrainingConfig.wan_lora(
data_path=str(TRAINING_PATH),
output_path=str(OUTPUT_PATH),
buckets=training_buckets
)
else:
error_msg = "Full finetune for Wan is not yet supported in this UI"
logger.error(error_msg)
return error_msg, "Training configuration error"
else:
error_msg = f"Unsupported model type: {model_type}"
logger.error(error_msg)
return error_msg, "Unsupported model"
# Create validation dataset if needed
validation_file = None
#if enable_validation: # Add a parameter to control this
# validation_file = create_validation_config()
# if validation_file:
# config_args.extend([
# "--validation_dataset_file", str(validation_file),
# "--validation_steps", "500" # Set this to a suitable value
# ])
# Update with UI parameters
config.train_steps = int(train_steps)
config.batch_size = int(batch_size)
config.lr = float(learning_rate)
config.checkpointing_steps = int(save_iterations)
config.training_type = training_type
config.flow_weighting_scheme = flow_weighting_scheme
config.lr_warmup_steps = int(lr_warmup_steps)
# Update the NUM_GPUS variable and CUDA_VISIBLE_DEVICES
num_gpus = min(num_gpus, get_available_gpu_count())
if num_gpus <= 0:
num_gpus = 1
# Generate CUDA_VISIBLE_DEVICES string
visible_devices = ",".join([str(i) for i in range(num_gpus)])
config.data_root = str(dataset_config_file)
# Update LoRA parameters if using LoRA training type
if training_type == "lora":
config.lora_rank = int(lora_rank)
config.lora_alpha = int(lora_alpha)
# Update with resume_from_checkpoint if provided
if resume_from_checkpoint:
config.resume_from_checkpoint = resume_from_checkpoint
self.append_log(f"Resuming from checkpoint: {resume_from_checkpoint} (will use 'latest')")
config.resume_from_checkpoint = "latest"
# Common settings for both models
config.mixed_precision = DEFAULT_MIXED_PRECISION
config.seed = DEFAULT_SEED
config.gradient_checkpointing = True
config.enable_slicing = True
config.enable_tiling = True
config.caption_dropout_p = DEFAULT_CAPTION_DROPOUT_P
config.precomputation_items = precomputation_items
validation_error = self.validate_training_config(config, model_type)
if validation_error:
error_msg = f"Configuration validation failed: {validation_error}"
logger.error(error_msg)
return "Error: Invalid configuration", error_msg
# Convert config to command line arguments for all launcher types
config_args = config.to_args_list()
logger.debug("Generated args list: %s", config_args)
# Use different launch commands based on model type
# For Wan models, use torchrun instead of accelerate launch
if model_type == "wan":
# Configure torchrun parameters
torchrun_args = [
"torchrun",
"--standalone",
"--nproc_per_node=" + str(num_gpus),
"--nnodes=1",
"--rdzv_backend=c10d",
"--rdzv_endpoint=localhost:0",
str(train_script)
]
# Additional args needed for torchrun
config_args.extend([
"--parallel_backend", "ptd",
"--pp_degree", "1",
"--dp_degree", "1",
"--dp_shards", "1",
"--cp_degree", "1",
"--tp_degree", "1"
])
# Log the full command for debugging
command_str = ' '.join(torchrun_args + config_args)
self.append_log(f"Command: {command_str}")
logger.info(f"Executing command: {command_str}")
launch_args = torchrun_args
else:
# For other models, use accelerate launch as before
# Determine the appropriate accelerate config file based on num_gpus
accelerate_config = None
if num_gpus == 1:
accelerate_config = "accelerate_configs/uncompiled_1.yaml"
elif num_gpus == 2:
accelerate_config = "accelerate_configs/uncompiled_2.yaml"
elif num_gpus == 4:
accelerate_config = "accelerate_configs/uncompiled_4.yaml"
elif num_gpus == 8:
accelerate_config = "accelerate_configs/uncompiled_8.yaml"
else:
# Default to 1 GPU config if no matching config is found
accelerate_config = "accelerate_configs/uncompiled_1.yaml"
num_gpus = 1
visible_devices = "0"
# Configure accelerate parameters
accelerate_args = [
"accelerate", "launch",
"--config_file", accelerate_config,
"--gpu_ids", visible_devices,
"--mixed_precision=bf16",
"--num_processes=" + str(num_gpus),
"--num_machines=1",
"--dynamo_backend=no",
str(train_script)
]
# Log the full command for debugging
command_str = ' '.join(accelerate_args + config_args)
self.append_log(f"Command: {command_str}")
logger.info(f"Executing command: {command_str}")
launch_args = accelerate_args
# Set environment variables
env = os.environ.copy()
env["NCCL_P2P_DISABLE"] = "1"
env["TORCH_NCCL_ENABLE_MONITORING"] = "0"
env["WANDB_MODE"] = "offline"
env["HF_API_TOKEN"] = HF_API_TOKEN
env["FINETRAINERS_LOG_LEVEL"] = "DEBUG" # Added for better debugging
env["CUDA_VISIBLE_DEVICES"] = visible_devices
#if progress:
# progress(0.9, desc="Launching training process")
# Start the training process
process = subprocess.Popen(
launch_args + config_args,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
start_new_session=True,
env=env,
cwd=str(current_dir),
bufsize=1,
universal_newlines=True
)
logger.info(f"Started process with PID: {process.pid}")
with open(self.pid_file, 'w') as f:
f.write(str(process.pid))
# Save session info including repo_id for later hub upload
self.save_session({
"model_type": model_type,
"model_version": model_version,
"training_type": training_type,
"lora_rank": lora_rank,
"lora_alpha": lora_alpha,
"train_steps": train_steps,
"batch_size": batch_size,
"learning_rate": learning_rate,
"save_iterations": save_iterations,
"num_gpus": num_gpus,
"precomputation_items": precomputation_items,
"lr_warmup_steps": lr_warmup_steps,
"repo_id": repo_id,
"start_time": datetime.now().isoformat()
})
# Update initial training status
total_steps = int(train_steps)
self.save_status(
state='training',
step=0,
total_steps=total_steps,
loss=0.0,
message='Training started',
repo_id=repo_id,
model_type=model_type,
training_type=training_type
)
# Start monitoring process output
self._start_log_monitor(process)
success_msg = f"Started {training_type} training for {model_type} model"
self.append_log(success_msg)
logger.info(success_msg)
# Final progress update - now we'll track it through the log monitor
#if progress:
# progress(1.0, desc="Training started successfully")
return success_msg, self.get_logs()
except Exception as e:
error_msg = f"Error {'resuming' if is_resuming else 'starting'} training: {str(e)}"
self.append_log(error_msg)
logger.exception("Training startup failed")
traceback.print_exc()
return f"Error {'resuming' if is_resuming else 'starting'} training", error_msg
def stop_training(self) -> Tuple[str, str]:
"""Stop training process"""
if not self.pid_file.exists():
return "No training process found", self.get_logs()
try:
with open(self.pid_file, 'r') as f:
pid = int(f.read().strip())
if psutil.pid_exists(pid):
os.killpg(os.getpgid(pid), signal.SIGTERM)
if self.pid_file.exists():
self.pid_file.unlink()
self.append_log("Training process stopped")
self.save_status(state='stopped', message='Training stopped')
return "Training stopped successfully", self.get_logs()
except Exception as e:
error_msg = f"Error stopping training: {str(e)}"
self.append_log(error_msg)
if self.pid_file.exists():
self.pid_file.unlink()
return "Error stopping training", error_msg
def pause_training(self) -> Tuple[str, str]:
"""Pause training process by sending SIGUSR1"""
if not self.is_training_running():
return "No training process found", self.get_logs()
try:
with open(self.pid_file, 'r') as f:
pid = int(f.read().strip())
if psutil.pid_exists(pid):
os.kill(pid, signal.SIGUSR1) # Signal to pause
self.save_status(state='paused', message='Training paused')
self.append_log("Training paused")
return "Training paused", self.get_logs()
except Exception as e:
error_msg = f"Error pausing training: {str(e)}"
self.append_log(error_msg)
return "Error pausing training", error_msg
def resume_training(self) -> Tuple[str, str]:
"""Resume training process by sending SIGUSR2"""
if not self.is_training_running():
return "No training process found", self.get_logs()
try:
with open(self.pid_file, 'r') as f:
pid = int(f.read().strip())
if psutil.pid_exists(pid):
os.kill(pid, signal.SIGUSR2) # Signal to resume
self.save_status(state='training', message='Training resumed')
self.append_log("Training resumed")
return "Training resumed", self.get_logs()
except Exception as e:
error_msg = f"Error resuming training: {str(e)}"
self.append_log(error_msg)
return "Error resuming training", error_msg
def is_training_running(self) -> bool:
"""Check if training is currently running"""
if not self.pid_file.exists():
return False
try:
with open(self.pid_file, 'r') as f:
pid = int(f.read().strip())
# Check if process exists AND is a Python process running train.py
if psutil.pid_exists(pid):
try:
process = psutil.Process(pid)
cmdline = process.cmdline()
# Check if it's a Python process running train.py
return any('train.py' in cmd for cmd in cmdline)
except (psutil.NoSuchProcess, psutil.AccessDenied):
return False
return False
except:
return False
def recover_interrupted_training(self) -> Dict[str, Any]:
"""Attempt to recover interrupted training
Returns:
Dict with recovery status and UI updates
"""
status = self.get_status()
ui_updates = {}
# Check for any checkpoints, even if status doesn't indicate training
checkpoints = list(OUTPUT_PATH.glob("finetrainers_step_*"))
has_checkpoints = len(checkpoints) > 0
# If status indicates training but process isn't running, or if we have checkpoints
# and no active training process, try to recover
if (status.get('status') in ['training', 'paused'] and not self.is_training_running()) or \
(has_checkpoints and not self.is_training_running()):
logger.info("Detected interrupted training session or existing checkpoints, attempting to recover...")
# Get the latest checkpoint
last_session = self.load_session()
if not last_session:
logger.warning("No session data found for recovery, but will check for checkpoints")
# Try to create a default session based on UI state if we have checkpoints
if has_checkpoints:
ui_state = self.load_ui_state()
# Create a default session using UI state values
last_session = {
"params": {
"model_type": MODEL_TYPES.get(ui_state.get("model_type", list(MODEL_TYPES.keys())[0])),
"model_version": ui_state.get("model_version", ""),
"training_type": TRAINING_TYPES.get(ui_state.get("training_type", list(TRAINING_TYPES.keys())[0])),
"lora_rank": ui_state.get("lora_rank", DEFAULT_LORA_RANK_STR),
"lora_alpha": ui_state.get("lora_alpha", DEFAULT_LORA_ALPHA_STR),
"train_steps": ui_state.get("train_steps", DEFAULT_NB_TRAINING_STEPS),
"batch_size": ui_state.get("batch_size", DEFAULT_BATCH_SIZE),
"learning_rate": ui_state.get("learning_rate", DEFAULT_LEARNING_RATE),
"save_iterations": ui_state.get("save_iterations", DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS),
"preset_name": ui_state.get("training_preset", list(TRAINING_PRESETS.keys())[0]),
"repo_id": "", # Default empty repo ID,
"auto_resume": ui_state.get("auto_resume", DEFAULT_AUTO_RESUME)
}
}
logger.info("Created default session from UI state for recovery")
else:
logger.warning(f"No checkpoints found for recovery")
# Set buttons for no active training
ui_updates = {
"start_btn": {"interactive": True, "variant": "primary", "value": "Start Training"},
"stop_btn": {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"},
"delete_checkpoints_btn": {"interactive": False, "variant": "stop", "value": "Delete All Checkpoints"},
"pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False}
}
return {"status": "idle", "message": "No training in progress", "ui_updates": ui_updates}
# Find the latest checkpoint if we have checkpoints
latest_checkpoint = None
checkpoint_step = 0
if has_checkpoints:
# Find the latest checkpoint by step number
latest_checkpoint = max(checkpoints, key=lambda x: int(x.name.split("_")[-1]))
checkpoint_step = int(latest_checkpoint.name.split("_")[-1])
logger.info(f"Found checkpoint at step {checkpoint_step}")
# both options are valid, but imho it is easier to just return "latest"
# under the hood Finetrainers will convert ("latest") to (-1)
#latest_checkpoint = int(checkpoint_step)
latest_checkpoint = "latest"
else:
logger.warning("No checkpoints found for recovery")
# Set buttons for no active training
ui_updates = {
"start_btn": {"interactive": True, "variant": "primary", "value": "Start Training"},
"stop_btn": {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"},
"delete_checkpoints_btn": {"interactive": False, "variant": "stop", "value": "Delete All Checkpoints"},
"pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False}
}
return {"status": "error", "message": "No checkpoints found", "ui_updates": ui_updates}
# Extract parameters from the saved session (not current UI state)
# This ensures we use the original training parameters
params = last_session.get('params', {})
# Map internal model type back to display name for UI
model_type_internal = params.get('model_type')
model_type_display = model_type_internal
# Find the display name that maps to our internal model type
for display_name, internal_name in MODEL_TYPES.items():
if internal_name == model_type_internal:
model_type_display = display_name
logger.info(f"Mapped internal model type '{model_type_internal}' to display name '{model_type_display}'")
break
# Get training type (default to LoRA if not present in saved session)
training_type_internal = params.get('training_type', 'lora')
training_type_display = next((disp for disp, val in TRAINING_TYPES.items() if val == training_type_internal), list(TRAINING_TYPES.keys())[0])
# Add UI updates to restore the training parameters in the UI
# This shows the user what values are being used for the resumed training
ui_updates.update({
"model_type": model_type_display,
"model_version": params.get('model_version', ''),
"training_type": training_type_display,
"lora_rank": params.get('lora_rank', DEFAULT_LORA_RANK_STR),
"lora_alpha": params.get('lora_alpha', DEFAULT_LORA_ALPHA_STR),
"train_steps": params.get('train_steps', DEFAULT_NB_TRAINING_STEPS),
"batch_size": params.get('batch_size', DEFAULT_BATCH_SIZE),
"learning_rate": params.get('learning_rate', DEFAULT_LEARNING_RATE),
"save_iterations": params.get('save_iterations', DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS),
"training_preset": params.get('preset_name', list(TRAINING_PRESETS.keys())[0]),
"auto_resume": params.get("auto_resume", DEFAULT_AUTO_RESUME)
})
# Check if we should auto-recover (immediate restart)
ui_state = self.load_ui_state()
auto_recover = ui_state.get("auto_resume", DEFAULT_AUTO_RESUME)
logger.info(f"Auto-resume is {'enabled' if auto_recover else 'disabled'}")
if auto_recover:
try:
result = self.start_training(
model_type=model_type_internal,
lora_rank=params.get('lora_rank', DEFAULT_LORA_RANK_STR),
lora_alpha=params.get('lora_alpha', DEFAULT_LORA_ALPHA_STR),
train_steps=params.get('train_steps', DEFAULT_NB_TRAINING_STEPS),
batch_size=params.get('batch_size', DEFAULT_BATCH_SIZE),
learning_rate=params.get('learning_rate', DEFAULT_LEARNING_RATE),
save_iterations=params.get('save_iterations', DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS),
model_version=params.get('model_version', ''),
repo_id=params.get('repo_id', ''),
preset_name=params.get('preset_name', list(TRAINING_PRESETS.keys())[0]),
training_type=training_type_internal,
resume_from_checkpoint="latest"
)
# Set buttons for active training
ui_updates.update({
"start_btn": {"interactive": False, "variant": "secondary", "value": "Start over a new training"},
"stop_btn": {"interactive": True, "variant": "primary", "value": "Stop at Last Checkpoint"},
"delete_checkpoints_btn": {"interactive": False, "variant": "stop", "value": "Delete All Checkpoints"},
"pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False}
})
return {
"status": "recovered",
"message": f"Training resumed from checkpoint {checkpoint_step}",
"result": result,
"ui_updates": ui_updates
}
except Exception as e:
logger.error(f"Failed to auto-resume training: {str(e)}")
# Set buttons for manual recovery
ui_updates.update({
"start_btn": {"interactive": True, "variant": "primary", "value": "Start over a new training"},
"stop_btn": {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"},
"delete_checkpoints_btn": {"interactive": True, "variant": "stop", "value": "Delete All Checkpoints"},
"pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False}
})
return {"status": "error", "message": f"Failed to auto-resume: {str(e)}", "ui_updates": ui_updates}
else:
# Set up UI for manual recovery
ui_updates.update({
"start_btn": {"interactive": True, "variant": "primary", "value": "Start over a new training"},
"stop_btn": {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"},
"pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False}
})
return {"status": "ready_to_recover", "message": f"Ready to resume from checkpoint {checkpoint_step}", "ui_updates": ui_updates}
elif self.is_training_running():
# Process is still running, set buttons accordingly
ui_updates = {
"start_btn": {"interactive": False, "variant": "secondary", "value": "Start over a new training" if has_checkpoints else "Start Training"},
"stop_btn": {"interactive": True, "variant": "primary", "value": "Stop at Last Checkpoint"},
"pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False},
"delete_checkpoints_btn": {"interactive": False, "variant": "stop", "value": "Delete All Checkpoints"}
}
return {"status": "running", "message": "Training process is running", "ui_updates": ui_updates}
else:
# No training process, set buttons to default state
button_text = "Start over a new training" if has_checkpoints else "Start Training"
ui_updates = {
"start_btn": {"interactive": True, "variant": "primary", "value": button_text},
"stop_btn": {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"},
"pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False},
"delete_checkpoints_btn": {"interactive": has_checkpoints, "variant": "stop", "value": "Delete All Checkpoints"}
}
return {"status": "idle", "message": "No training in progress", "ui_updates": ui_updates}
def delete_all_checkpoints(self) -> str:
"""Delete all checkpoints in the output directory.
Returns:
Status message
"""
if self.is_training_running():
return "Cannot delete checkpoints while training is running. Stop training first."
try:
# Find all checkpoint directories
checkpoints = list(OUTPUT_PATH.glob("finetrainers_step_*"))
if not checkpoints:
return "No checkpoints found to delete."
# Delete each checkpoint directory
for checkpoint in checkpoints:
if checkpoint.is_dir():
shutil.rmtree(checkpoint)
# Also delete session.json which contains previous training info
if self.session_file.exists():
self.session_file.unlink()
# Reset status file to idle
self.save_status(state='idle', message='No training in progress')
self.append_log(f"Deleted {len(checkpoints)} checkpoint(s)")
return f"Successfully deleted {len(checkpoints)} checkpoint(s)"
except Exception as e:
error_msg = f"Error deleting checkpoints: {str(e)}"
self.append_log(error_msg)
return error_msg
def clear_training_data(self) -> str:
"""Clear all training data"""
if self.is_training_running():
return gr.Error("Cannot clear data while training is running")
try:
for file in TRAINING_VIDEOS_PATH.glob("*.*"):
file.unlink()
for file in TRAINING_PATH.glob("*.*"):
file.unlink()
self.append_log("Cleared all training data")
return "Training data cleared successfully"
except Exception as e:
error_msg = f"Error clearing training data: {str(e)}"
self.append_log(error_msg)
return error_msg
def save_status(self, state: str, **kwargs) -> None:
"""Save current training status"""
status = {
'status': state,
'timestamp': datetime.now().isoformat(),
**kwargs
}
if state == "Training started" or state == "initializing":
gr.Info("Initializing model and dataset..")
elif state == "training":
#gr.Info("Training started!")
# Training is in progress
pass
elif state == "completed":
gr.Info("Training completed!")
with open(self.status_file, 'w') as f:
json.dump(status, f, indent=2)
def _start_log_monitor(self, process: subprocess.Popen) -> None:
"""Start monitoring process output for logs"""
def monitor():
self.append_log("Starting log monitor thread")
def read_stream(stream, is_error=False):
if stream:
output = stream.readline()
if output:
# Remove decode() since output is already a string due to universal_newlines=True
line = output.strip()
self.append_log(line)
if is_error:
#logger.error(line)
pass
# Parse metrics only from stdout
metrics = parse_training_log(line)
if metrics:
# Get current status first
current_status = self.get_status()
# Update with new metrics
current_status.update(metrics)
# Ensure 'state' is present, use current status if available, default to 'training'
if 'status' in current_status:
# Use 'status' as 'state' to match the required parameter
state = current_status.pop('status', 'training')
self.save_status(state, **current_status)
else:
# If no status in the current_status, use 'training' as the default state
self.save_status('training', **current_status)
return True
return False
# Create separate threads to monitor stdout and stderr
def monitor_stream(stream, is_error=False):
while process.poll() is None:
if not read_stream(stream, is_error):
time.sleep(0.1) # Short sleep to avoid CPU thrashing
# Start threads to monitor each stream
stdout_thread = threading.Thread(target=monitor_stream, args=(process.stdout, False))
stderr_thread = threading.Thread(target=monitor_stream, args=(process.stderr, True))
stdout_thread.daemon = True
stderr_thread.daemon = True
stdout_thread.start()
stderr_thread.start()
# Wait for process to complete
process.wait()
# Wait for threads to finish reading any remaining output
stdout_thread.join(timeout=2)
stderr_thread.join(timeout=2)
# Process any remaining output after process ends
while read_stream(process.stdout):
pass
while read_stream(process.stderr, True):
pass
# Process finished
return_code = process.poll()
if return_code == 0:
success_msg = "Training completed successfully"
self.append_log(success_msg)
gr.Info(success_msg)
self.save_status(state='completed', message=success_msg)
# Upload final model if repository was specified
session = self.load_session()
if session and session['params'].get('repo_id'):
repo_id = session['params']['repo_id']
latest_run = max(Path(OUTPUT_PATH).glob('*'), key=os.path.getmtime)
if self.upload_to_hub(latest_run, repo_id):
self.append_log(f"Model uploaded to {repo_id}")
else:
self.append_log("Failed to upload model to hub")
else:
error_msg = f"Training failed with return code {return_code}"
self.append_log(error_msg)
logger.error(error_msg)
self.save_status(state='error', message=error_msg)
# Clean up PID file
if self.pid_file.exists():
self.pid_file.unlink()
monitor_thread = threading.Thread(target=monitor)
monitor_thread.daemon = True
monitor_thread.start()
def upload_to_hub(self, model_path: Path, repo_id: str) -> bool:
"""Upload model to Hugging Face Hub
Args:
model_path: Path to model files
repo_id: Repository ID (username/model-name)
Returns:
bool: Whether upload was successful
"""
try:
token = os.getenv("HF_API_TOKEN")
if not token:
self.append_log("Error: HF_API_TOKEN not set")
return False
# Create or get repo
create_repo(repo_id, token=token, repo_type="model", exist_ok=True)
# Upload files
upload_folder(
folder_path=str(OUTPUT_PATH),
repo_id=repo_id,
repo_type="model",
commit_message="Training completed"
)
return True
except Exception as e:
self.append_log(f"Error uploading to hub: {str(e)}")
return False
def get_model_output_safetensors(self) -> str:
"""Return the path to the model safetensors
Returns:
Path to created ZIP file
"""
model_output_safetensors_path = OUTPUT_PATH / "pytorch_lora_weights.safetensors"
return str(model_output_safetensors_path)
def create_training_dataset_zip(self) -> str:
"""Create a ZIP file containing all training data
Returns:
Path to created ZIP file
"""
# Create temporary zip file
with tempfile.NamedTemporaryFile(suffix='.zip', delete=False) as temp_zip:
temp_zip_path = str(temp_zip.name)
print(f"Creating zip file for {TRAINING_PATH}..")
try:
make_archive(TRAINING_PATH, temp_zip_path)
print(f"Zip file created!")
return temp_zip_path
except Exception as e:
print(f"Failed to create zip: {str(e)}")
raise gr.Error(f"Failed to create zip: {str(e)}") |