File size: 17,662 Bytes
023c8c3
 
 
bceaa96
023c8c3
 
 
bceaa96
bcf8146
 
 
 
 
bceaa96
bcf8146
b82e00d
bcf8146
 
 
b82e00d
 
 
 
 
 
bcf8146
 
b82e00d
 
 
 
 
bcf8146
 
b82e00d
bcf8146
b82e00d
 
bcf8146
 
 
 
 
 
b82e00d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e5f6db
b82e00d
 
 
 
 
 
 
 
 
 
 
8e5f6db
b82e00d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e5f6db
bcf8146
b82e00d
 
 
 
 
 
 
bcf8146
 
b82e00d
 
 
 
 
 
 
023c8c3
ca69418
b82e00d
c87c1cc
b82e00d
 
 
 
 
 
c87c1cc
 
 
b82e00d
 
 
 
 
 
1c8dc47
 
 
 
b82e00d
 
 
 
 
1c8dc47
 
 
 
 
 
b82e00d
 
ca69418
 
b82e00d
 
 
 
ca69418
 
b82e00d
ca69418
b82e00d
ca69418
 
 
 
 
 
b82e00d
 
 
 
 
 
 
 
ca69418
b82e00d
 
 
 
 
 
 
c87c1cc
 
 
b82e00d
 
 
 
 
 
 
 
52b0587
b82e00d
52b0587
b82e00d
 
 
 
 
 
 
 
 
52b0587
ca69418
 
b82e00d
52b0587
b82e00d
52b0587
b82e00d
 
 
 
 
74087f2
b82e00d
74087f2
52b0587
74087f2
b82e00d
74087f2
 
b82e00d
74087f2
b82e00d
 
52b0587
 
b82e00d
8e5f6db
ca69418
8e5f6db
ca69418
8e5f6db
 
 
 
ca69418
 
 
 
 
 
8e5f6db
ca69418
 
 
 
8e5f6db
ca69418
 
 
 
 
 
 
 
8e5f6db
 
 
 
 
 
 
ca69418
 
 
 
 
 
 
 
 
bcf8146
ca69418
b82e00d
ca69418
3581570
ca69418
 
b82e00d
ca69418
 
1c8dc47
b82e00d
 
3581570
1c8dc47
ca69418
 
 
 
 
 
 
b82e00d
 
 
 
c446987
b82e00d
c446987
b82e00d
 
 
 
ca69418
 
 
 
 
 
b82e00d
ca69418
 
 
b82e00d
 
 
 
 
d3574e6
 
 
b82e00d
 
 
 
 
c446987
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca69418
c446987
 
ca69418
 
 
c446987
 
a66cfa3
bcf8146
023c8c3
bcf8146
023c8c3
 
 
 
 
 
 
 
 
 
 
 
74dee69
023c8c3
 
426ec64
023c8c3
 
 
 
 
 
 
bcf8146
 
023c8c3
bcf8146
 
 
023c8c3
bcf8146
 
023c8c3
bcf8146
 
 
023c8c3
 
 
 
 
 
a66cfa3
 
 
 
 
023c8c3
 
 
 
 
a66cfa3
023c8c3
 
 
74087f2
 
023c8c3
 
 
 
74dee69
023c8c3
 
 
 
 
 
a66cfa3
 
 
 
 
 
 
 
 
 
023c8c3
 
 
 
 
a66cfa3
023c8c3
bceaa96
 
 
bcf8146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
023c8c3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
import os
import tempfile
import torch
import numpy as np
import gradio as gr
from PIL import Image
import cv2
from diffusers import DiffusionPipeline
import cupy as cp
from cupyx.scipy.ndimage import label as cp_label
from cupyx.scipy.ndimage import binary_dilation
from sklearn.cluster import DBSCAN
import trimesh

class GPUSatelliteModelGenerator:
    
    def __init__(self, building_height=0.05):
        self.building_height = building_height
        
        # Add grass and tree colors
        self.grass_colors = cp.array([
            [47, 70, 69],  # Light green grass
            [40, 60, 55],
            [45, 65, 60],
            [50, 75, 65]
        ])
        
        self.tree_colors = cp.array([
            [19, 25, 16],  # Dark green trees
            [26, 33, 23],
            [22, 30, 20],
            [24, 35, 25]
        ])
        
        # Expanded water colors
        self.water_colors = cp.array([
            [40, 18, 4],   # Dark blue water
            [39, 25, 6],
            [167, 225, 217],
            [67, 101, 97],
            [53, 83, 84],
            [47, 94, 100],
            [73, 131, 135]
        ])
        
        # Existing color arrays with optimized memory layout
        self.shadow_colors = cp.asarray([
            [31, 42, 76],
            [58, 64, 92],
            [15, 27, 56],
            [21, 22, 50],
            [76, 81, 99]
        ], order='C')  # Use C-contiguous memory layout
        
        self.road_colors = cp.asarray([
            [187, 182, 175],
            [138, 138, 138], 
            [142, 142, 129],
            [202, 199, 189]
        ], order='C')

        # Output colors (BGR for OpenCV) - optimized memory layout
        self.colors = {
            'black': cp.asarray([0, 0, 0], order='C'),     # Shadows
            'blue': cp.asarray([255, 0, 0], order='C'),    # Water
            'dark_green': cp.asarray([0, 100, 0], order='C'),  # Trees
            'light_green': cp.asarray([0, 255, 0], order='C'), # Grass
            'gray': cp.asarray([128, 128, 128], order='C'),    # Roads
            'brown': cp.asarray([0, 140, 255], order='C'),     # Terrain
            'white': cp.asarray([255, 255, 255], order='C'),   # Buildings
            'salmon': cp.asarray([128, 128, 255], order='C')   # Roofs
        }
        
        # Convert all color arrays to HSV space at initialization
        self.initialize_hsv_colors()
        
        # Pre-compute kernels for morphological operations
        self.cleanup_kernel = cp.ones((3, 3), dtype=bool)
        self.cleanup_kernel[1, 1] = False
        self.tree_kernel = cp.ones((5, 5), dtype=bool)
        
        # Optimization parameters
        self.min_area = 1000
        self.eps = 0.3
        self.min_samples = 5
    def initialize_hsv_colors(self):
        """Initialize all HSV color spaces at once"""
        color_arrays = {
            'grass': self.grass_colors,
            'tree': self.tree_colors,
            'water': self.water_colors,
            'shadow': self.shadow_colors,
            'road': self.road_colors
        }
        
        self.hsv_colors = {}
        self.tolerances = {
            'grass': {'hue': 15, 'sat': 0.2, 'val': 0.15},
            'tree': {'hue': 12, 'sat': 0.25, 'val': 0.15},
            'water': {'hue': 25, 'sat': 0.2, 'val': 0.25},
            'shadow': {'hue': 15, 'sat': 0.15, 'val': 0.12},
            'road': {'hue': 10, 'sat': 0.12, 'val': 0.15}
        }
        
        for name, colors in color_arrays.items():
            hsv = cv2.cvtColor(colors.get().reshape(-1, 1, 3).astype(np.uint8),
                             cv2.COLOR_RGB2HSV)
            hsv_gpu = cp.asarray(hsv.reshape(-1, 3))
            hsv_gpu[:, 0] = hsv_gpu[:, 0] * 2  # Scale hue to 0-360
            hsv_gpu[:, 1:] = hsv_gpu[:, 1:] / 255  # Normalize S and V
            self.hsv_colors[name] = hsv_gpu

    @staticmethod
    @cp.fuse()  # Use CuPy's JIT compilation
    def gpu_color_distance_hsv(pixel_hsv, reference_hsv, hue_tolerance, sat_tolerance, val_tolerance):
        """Optimized HSV color distance calculation using CuPy's JIT"""
        h_diff = cp.minimum(cp.abs(pixel_hsv[0] - reference_hsv[0]),
                          360 - cp.abs(pixel_hsv[0] - reference_hsv[0]))
        s_diff = cp.abs(pixel_hsv[1] - reference_hsv[1])
        v_diff = cp.abs(pixel_hsv[2] - reference_hsv[2])
        
        return (h_diff <= hue_tolerance) & \
               (s_diff <= sat_tolerance) & \
               (v_diff <= val_tolerance)

    def generate_tree_vertices(self, tree_mask, base_vertices):
        """Generate randomized tree heights and positions"""
        tree_positions = cp.where(tree_mask)
        num_trees = len(tree_positions[0])
        
        # Return original vertices if no trees detected
        if num_trees == 0:
            return base_vertices
        
        # Random height variation for trees
        tree_heights = cp.random.uniform(0.15, 0.25, num_trees)
        
        # Create vertex displacements for tree geometry
        tree_vertices = base_vertices.copy()
        
        # Get indices for tree positions
        tree_indices = cp.ravel_multi_index(tree_positions, tree_mask.shape)
        
        # Add height offsets to tree positions
        tree_vertices[tree_indices, 1] += tree_heights
        
        return tree_vertices

    def segment_image_gpu(self, img):
        """Optimized GPU-accelerated image segmentation"""
        # Transfer image to GPU with optimal memory layout
        gpu_img = cp.asarray(img, order='C')
        gpu_hsv = cp.asarray(cv2.cvtColor(img, cv2.COLOR_BGR2HSV), order='C')
        
        height, width = img.shape[:2]
        output = cp.zeros_like(gpu_img, order='C')
        
        # Prepare HSV data
        hsv_pixels = gpu_hsv.reshape(-1, 3)
        h, s, v = hsv_pixels.T
        h = h * 2  # Convert to 0-360 range
        s = s / 255
        v = v / 255
        
        # Initialize masks with pre-allocated memory
        masks = {
            'shadow': cp.zeros(height * width, dtype=bool),
            'road': cp.zeros(height * width, dtype=bool),
            'water': cp.zeros(height * width, dtype=bool),
            'grass': cp.zeros(height * width, dtype=bool),
            'tree': cp.zeros(height * width, dtype=bool)
        }
        
        # Parallel color matching using CuPy's optimized operations
        for category, hsv_refs in self.hsv_colors.items():
            tolerance = self.tolerances[category]
            for ref_hsv in hsv_refs:
                masks[category] |= self.gpu_color_distance_hsv(
                    cp.stack([h, s, v]),
                    ref_hsv,
                    tolerance['hue'],
                    tolerance['sat'],
                    tolerance['val']
                )
        
        # Optimized terrain and building detection
        vegetation_mask = ((h >= 40) & (h <= 150) & (s >= 0.15))
        terrain_mask = ((h >= 15) & (h <= 35) & (s >= 0.15) & (s <= 0.6))
        building_mask = ~(masks['shadow'] | masks['water'] | masks['road'] | 
                         masks['grass'] | masks['tree'] | vegetation_mask | 
                         terrain_mask)
        
        # Apply masks efficiently using CuPy's advanced indexing
        output_flat = output.reshape(-1, 3)
        for category, color_name in [
            ('shadow', 'black'),
            ('water', 'blue'),
            ('grass', 'light_green'),
            ('tree', 'dark_green'),
            ('road', 'gray')
        ]:
            output_flat[masks[category]] = self.colors[color_name]
        
        output_flat[terrain_mask] = self.colors['brown']
        output_flat[building_mask] = self.colors['white']
        
        # Reshape and clean up
        segmented = output.reshape(height, width, 3)
        segmented = self.apply_morphological_cleanup(segmented)
        
        return segmented

    def apply_morphological_cleanup(self, segmented):
        """Apply optimized morphological operations for cleanup"""
        for _ in range(2):  # Two passes for better results
            for color_name, color_value in self.colors.items():
                if color_name in ['white', 'dark_green']:  # Skip buildings and trees
                    continue
                
                color_mask = cp.all(segmented == color_value, axis=2)
                dilated = binary_dilation(color_mask, structure=self.cleanup_kernel)
                
                building_pixels = cp.all(segmented == self.colors['white'], axis=2)
                neighbor_count = cp.sum(dilated)
                
                if neighbor_count > 5:
                    segmented[building_pixels & dilated] = color_value
        
        return segmented

            
    def estimate_heights_gpu(self, img, segmented):
        """GPU-accelerated height estimation with roof consideration"""
        gpu_segmented = cp.asarray(segmented)
        buildings_mask = cp.logical_or(
            cp.all(gpu_segmented == self.colors['white'], axis=2),
            cp.all(gpu_segmented == self.colors['salmon'], axis=2)
        )
        shadows_mask = cp.all(gpu_segmented == self.colors['black'], axis=2)
        
        # Connected components labeling on GPU
        labeled_array, num_features = cp_label(buildings_mask)
        
        # Calculate areas using GPU
        areas = cp.bincount(labeled_array.ravel())[1:]
        max_area = cp.max(areas) if len(areas) > 0 else 1
        
        height_map = cp.zeros_like(labeled_array, dtype=cp.float32)
        
        # Process each building/roof
        for label in range(1, num_features + 1):
            building_mask = (labeled_array == label)
            if not cp.any(building_mask):
                continue
            
            area = areas[label-1]
            size_factor = 0.3 + 0.7 * (area / max_area)
            
            # Check if this is a roof (salmon color)
            is_roof = cp.any(cp.all(gpu_segmented[building_mask] == self.colors['salmon'], axis=1))
            
            # Adjust height for roofs (typically smaller residential buildings)
            if is_roof:
                size_factor *= 0.8  # Slightly lower height for residential buildings
            
            # Calculate shadow influence
            dilated = binary_dilation(building_mask, structure=cp.ones((5,5)))
            shadow_ratio = cp.sum(dilated & shadows_mask) / cp.sum(dilated)
            shadow_factor = 0.2 + 0.8 * shadow_ratio
            
            final_height = size_factor * shadow_factor
            height_map[building_mask] = final_height
        
        return height_map.get() * 0.25

    def generate_mesh_gpu(self, height_map, texture_img):
        """Generate optimized 3D mesh with tree geometry"""
        height_map_gpu = cp.asarray(height_map)
        texture_img_gpu = cp.asarray(texture_img)
        height, width = height_map.shape
        
        # Generate base vertices
        x, z = cp.meshgrid(cp.arange(width), cp.arange(height))
        vertices = cp.stack([x, height_map_gpu * self.building_height, z], axis=-1)
        vertices = vertices.reshape(-1, 3)
        
        # Detect tree areas and generate tree geometry
        tree_mask = cp.all(texture_img_gpu == self.colors['dark_green'], axis=2)
        vertices = self.generate_tree_vertices(tree_mask, vertices)
        
        # Normalize coordinates
        scale = max(width, height)
        vertices[:, 0] = vertices[:, 0] / scale * 2 - (width / scale)
        vertices[:, 2] = vertices[:, 2] / scale * 2 - (height / scale)
        vertices[:, 1] = vertices[:, 1] * 2 - 1
        
        # Generate optimized faces and UVs
        faces = self.generate_faces_gpu(height, width)
        uvs = self.generate_uvs_gpu(vertices, width, height)
        
        # Create textured mesh using the original texture image
        return self.create_textured_mesh(vertices, faces, uvs, texture_img)
            

    @staticmethod
    def generate_faces_gpu(height, width):
        """Generate optimized face indices"""
        i, j = cp.meshgrid(cp.arange(height-1), cp.arange(width-1), indexing='ij')
        v0 = (i * width + j).flatten()
        v1 = v0 + 1
        v2 = ((i + 1) * width + j).flatten()
        v3 = v2 + 1
        
        return cp.vstack((
            cp.column_stack((v0, v2, v1)),
            cp.column_stack((v1, v2, v3))
        ))

    @staticmethod
    def generate_uvs_gpu(vertices, width, height):
        """Generate optimized UV coordinates"""
        uvs = cp.zeros((vertices.shape[0], 2), order='C')
        # Fix: Use width-1 and height-1 for proper UV scaling, and swap coordinates
        uvs[:, 0] = vertices[:, 0] * width / ((width - 1) * 2) + 0.5  # Scale and center X coordinate
        uvs[:, 1] = 1 - (vertices[:, 2] * height / ((height - 1) * 2) + 0.5)  # Scale, flip and center Y coordinate
        return uvs

    @staticmethod
    def create_textured_mesh(vertices, faces, uvs, texture_img):
        """Create textured mesh with proper color conversion"""
        # Ensure we're working with the original texture image
        if isinstance(texture_img, cp.ndarray):
            texture_img = texture_img.get()
            
        # Convert texture image to RGB format for PIL
        if len(texture_img.shape) == 3:
            if texture_img.shape[2] == 4:  # BGRA
                texture_img = cv2.cvtColor(texture_img, cv2.COLOR_BGRA2RGB)
            else:  # BGR
                texture_img = cv2.cvtColor(texture_img, cv2.COLOR_BGR2RGB)
        
        # Create PIL Image from the texture
        texture_pil = Image.fromarray(texture_img)
        
        # Create the mesh with texture
        mesh = trimesh.Trimesh(
            vertices=vertices.get() if isinstance(vertices, cp.ndarray) else vertices,
            faces=faces.get() if isinstance(faces, cp.ndarray) else faces,
            visual=trimesh.visual.TextureVisuals(
                uv=uvs.get() if isinstance(uvs, cp.ndarray) else uvs,
                image=texture_pil
            )
        )
        
        return mesh
        
def generate_and_process_map(prompt: str) -> tuple[str | None, np.ndarray | None]:
    """Generate satellite image from prompt and convert to 3D model using GPU acceleration"""
    try:
        # Set dimensions and device
        width = height = 1024
        
        # Generate random seed
        seed = np.random.randint(0, np.iinfo(np.int32).max)
        
        # Set random seeds
        torch.manual_seed(seed)
        np.random.seed(seed)
        
        # Generate satellite image using FLUX
        generator = torch.Generator(device=device).manual_seed(seed)
        generated_image = flux_pipe(
            prompt=f"satellite view in the style of TOK, {prompt}",
            width=width,
            height=height,
            num_inference_steps=25,
            generator=generator,
            guidance_scale=7.5
        ).images[0]
        
        # Convert PIL Image to OpenCV format
        cv_image = cv2.cvtColor(np.array(generated_image), cv2.COLOR_RGB2BGR)
        
        # Initialize GPU-accelerated generator
        generator = GPUSatelliteModelGenerator(building_height=0.09)
        
        # Process image using GPU
        print("Segmenting image using GPU...")
        segmented_img = generator.segment_image_gpu(cv_image)
        
        print("Estimating heights using GPU...")
        height_map = generator.estimate_heights_gpu(cv_image, segmented_img)
        
        # Generate mesh using GPU-accelerated calculations
        print("Generating mesh using GPU...")
        mesh = generator.generate_mesh_gpu(height_map, cv_image)
        
        # Export to GLB
        temp_dir = tempfile.mkdtemp()
        output_path = os.path.join(temp_dir, 'output.glb')
        mesh.export(output_path)
        
        # Save segmented image to a temporary file
        segmented_path = os.path.join(temp_dir, 'segmented.png')
        cv2.imwrite(segmented_path, segmented_img.get())
        
        return output_path, segmented_path
        
    except Exception as e:
        print(f"Error during generation: {str(e)}")
        import traceback
        traceback.print_exc()
        return None, None

# Create Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Text to Map")
    gr.Markdown("Generate a 3D map from text!")
    
    with gr.Row():
        prompt_input = gr.Text(
            label="Enter your prompt",
            placeholder="classic american town"
        )
    
    with gr.Row():
        generate_btn = gr.Button("Generate", variant="primary")
    
    with gr.Row():
        with gr.Column():
            model_output = gr.Model3D(
                label="Generated 3D Map",
                clear_color=[0.0, 0.0, 0.0, 0.0],
            )
        with gr.Column():
            segmented_output = gr.Image(
                label="Segmented Map",
                type="filepath"
            )
    
    # Event handler
    generate_btn.click(
        fn=generate_and_process_map,
        inputs=[prompt_input],
        outputs=[model_output, segmented_output],
        api_name="generate"
    )

if __name__ == "__main__":
    # Initialize FLUX pipeline
    device = "cuda" if torch.cuda.is_available() else "cpu"
    dtype = torch.bfloat16
    
    repo_id = "black-forest-labs/FLUX.1-dev"
    adapter_id = "jbilcke-hf/flux-satellite"
    
    flux_pipe = DiffusionPipeline.from_pretrained(
        repo_id,
        torch_dtype=torch.bfloat16
    )
    flux_pipe.load_lora_weights(adapter_id)
    flux_pipe = flux_pipe.to(device)
    
    # Launch Gradio app
    demo.queue().launch()