Spaces:
Paused
Paused
File size: 17,662 Bytes
023c8c3 bceaa96 023c8c3 bceaa96 bcf8146 bceaa96 bcf8146 b82e00d bcf8146 b82e00d bcf8146 b82e00d bcf8146 b82e00d bcf8146 b82e00d bcf8146 b82e00d 8e5f6db b82e00d 8e5f6db b82e00d 8e5f6db bcf8146 b82e00d bcf8146 b82e00d 023c8c3 ca69418 b82e00d c87c1cc b82e00d c87c1cc b82e00d 1c8dc47 b82e00d 1c8dc47 b82e00d ca69418 b82e00d ca69418 b82e00d ca69418 b82e00d ca69418 b82e00d ca69418 b82e00d c87c1cc b82e00d 52b0587 b82e00d 52b0587 b82e00d 52b0587 ca69418 b82e00d 52b0587 b82e00d 52b0587 b82e00d 74087f2 b82e00d 74087f2 52b0587 74087f2 b82e00d 74087f2 b82e00d 74087f2 b82e00d 52b0587 b82e00d 8e5f6db ca69418 8e5f6db ca69418 8e5f6db ca69418 8e5f6db ca69418 8e5f6db ca69418 8e5f6db ca69418 bcf8146 ca69418 b82e00d ca69418 3581570 ca69418 b82e00d ca69418 1c8dc47 b82e00d 3581570 1c8dc47 ca69418 b82e00d c446987 b82e00d c446987 b82e00d ca69418 b82e00d ca69418 b82e00d d3574e6 b82e00d c446987 ca69418 c446987 ca69418 c446987 a66cfa3 bcf8146 023c8c3 bcf8146 023c8c3 74dee69 023c8c3 426ec64 023c8c3 bcf8146 023c8c3 bcf8146 023c8c3 bcf8146 023c8c3 bcf8146 023c8c3 a66cfa3 023c8c3 a66cfa3 023c8c3 74087f2 023c8c3 74dee69 023c8c3 a66cfa3 023c8c3 a66cfa3 023c8c3 bceaa96 bcf8146 023c8c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
import os
import tempfile
import torch
import numpy as np
import gradio as gr
from PIL import Image
import cv2
from diffusers import DiffusionPipeline
import cupy as cp
from cupyx.scipy.ndimage import label as cp_label
from cupyx.scipy.ndimage import binary_dilation
from sklearn.cluster import DBSCAN
import trimesh
class GPUSatelliteModelGenerator:
def __init__(self, building_height=0.05):
self.building_height = building_height
# Add grass and tree colors
self.grass_colors = cp.array([
[47, 70, 69], # Light green grass
[40, 60, 55],
[45, 65, 60],
[50, 75, 65]
])
self.tree_colors = cp.array([
[19, 25, 16], # Dark green trees
[26, 33, 23],
[22, 30, 20],
[24, 35, 25]
])
# Expanded water colors
self.water_colors = cp.array([
[40, 18, 4], # Dark blue water
[39, 25, 6],
[167, 225, 217],
[67, 101, 97],
[53, 83, 84],
[47, 94, 100],
[73, 131, 135]
])
# Existing color arrays with optimized memory layout
self.shadow_colors = cp.asarray([
[31, 42, 76],
[58, 64, 92],
[15, 27, 56],
[21, 22, 50],
[76, 81, 99]
], order='C') # Use C-contiguous memory layout
self.road_colors = cp.asarray([
[187, 182, 175],
[138, 138, 138],
[142, 142, 129],
[202, 199, 189]
], order='C')
# Output colors (BGR for OpenCV) - optimized memory layout
self.colors = {
'black': cp.asarray([0, 0, 0], order='C'), # Shadows
'blue': cp.asarray([255, 0, 0], order='C'), # Water
'dark_green': cp.asarray([0, 100, 0], order='C'), # Trees
'light_green': cp.asarray([0, 255, 0], order='C'), # Grass
'gray': cp.asarray([128, 128, 128], order='C'), # Roads
'brown': cp.asarray([0, 140, 255], order='C'), # Terrain
'white': cp.asarray([255, 255, 255], order='C'), # Buildings
'salmon': cp.asarray([128, 128, 255], order='C') # Roofs
}
# Convert all color arrays to HSV space at initialization
self.initialize_hsv_colors()
# Pre-compute kernels for morphological operations
self.cleanup_kernel = cp.ones((3, 3), dtype=bool)
self.cleanup_kernel[1, 1] = False
self.tree_kernel = cp.ones((5, 5), dtype=bool)
# Optimization parameters
self.min_area = 1000
self.eps = 0.3
self.min_samples = 5
def initialize_hsv_colors(self):
"""Initialize all HSV color spaces at once"""
color_arrays = {
'grass': self.grass_colors,
'tree': self.tree_colors,
'water': self.water_colors,
'shadow': self.shadow_colors,
'road': self.road_colors
}
self.hsv_colors = {}
self.tolerances = {
'grass': {'hue': 15, 'sat': 0.2, 'val': 0.15},
'tree': {'hue': 12, 'sat': 0.25, 'val': 0.15},
'water': {'hue': 25, 'sat': 0.2, 'val': 0.25},
'shadow': {'hue': 15, 'sat': 0.15, 'val': 0.12},
'road': {'hue': 10, 'sat': 0.12, 'val': 0.15}
}
for name, colors in color_arrays.items():
hsv = cv2.cvtColor(colors.get().reshape(-1, 1, 3).astype(np.uint8),
cv2.COLOR_RGB2HSV)
hsv_gpu = cp.asarray(hsv.reshape(-1, 3))
hsv_gpu[:, 0] = hsv_gpu[:, 0] * 2 # Scale hue to 0-360
hsv_gpu[:, 1:] = hsv_gpu[:, 1:] / 255 # Normalize S and V
self.hsv_colors[name] = hsv_gpu
@staticmethod
@cp.fuse() # Use CuPy's JIT compilation
def gpu_color_distance_hsv(pixel_hsv, reference_hsv, hue_tolerance, sat_tolerance, val_tolerance):
"""Optimized HSV color distance calculation using CuPy's JIT"""
h_diff = cp.minimum(cp.abs(pixel_hsv[0] - reference_hsv[0]),
360 - cp.abs(pixel_hsv[0] - reference_hsv[0]))
s_diff = cp.abs(pixel_hsv[1] - reference_hsv[1])
v_diff = cp.abs(pixel_hsv[2] - reference_hsv[2])
return (h_diff <= hue_tolerance) & \
(s_diff <= sat_tolerance) & \
(v_diff <= val_tolerance)
def generate_tree_vertices(self, tree_mask, base_vertices):
"""Generate randomized tree heights and positions"""
tree_positions = cp.where(tree_mask)
num_trees = len(tree_positions[0])
# Return original vertices if no trees detected
if num_trees == 0:
return base_vertices
# Random height variation for trees
tree_heights = cp.random.uniform(0.15, 0.25, num_trees)
# Create vertex displacements for tree geometry
tree_vertices = base_vertices.copy()
# Get indices for tree positions
tree_indices = cp.ravel_multi_index(tree_positions, tree_mask.shape)
# Add height offsets to tree positions
tree_vertices[tree_indices, 1] += tree_heights
return tree_vertices
def segment_image_gpu(self, img):
"""Optimized GPU-accelerated image segmentation"""
# Transfer image to GPU with optimal memory layout
gpu_img = cp.asarray(img, order='C')
gpu_hsv = cp.asarray(cv2.cvtColor(img, cv2.COLOR_BGR2HSV), order='C')
height, width = img.shape[:2]
output = cp.zeros_like(gpu_img, order='C')
# Prepare HSV data
hsv_pixels = gpu_hsv.reshape(-1, 3)
h, s, v = hsv_pixels.T
h = h * 2 # Convert to 0-360 range
s = s / 255
v = v / 255
# Initialize masks with pre-allocated memory
masks = {
'shadow': cp.zeros(height * width, dtype=bool),
'road': cp.zeros(height * width, dtype=bool),
'water': cp.zeros(height * width, dtype=bool),
'grass': cp.zeros(height * width, dtype=bool),
'tree': cp.zeros(height * width, dtype=bool)
}
# Parallel color matching using CuPy's optimized operations
for category, hsv_refs in self.hsv_colors.items():
tolerance = self.tolerances[category]
for ref_hsv in hsv_refs:
masks[category] |= self.gpu_color_distance_hsv(
cp.stack([h, s, v]),
ref_hsv,
tolerance['hue'],
tolerance['sat'],
tolerance['val']
)
# Optimized terrain and building detection
vegetation_mask = ((h >= 40) & (h <= 150) & (s >= 0.15))
terrain_mask = ((h >= 15) & (h <= 35) & (s >= 0.15) & (s <= 0.6))
building_mask = ~(masks['shadow'] | masks['water'] | masks['road'] |
masks['grass'] | masks['tree'] | vegetation_mask |
terrain_mask)
# Apply masks efficiently using CuPy's advanced indexing
output_flat = output.reshape(-1, 3)
for category, color_name in [
('shadow', 'black'),
('water', 'blue'),
('grass', 'light_green'),
('tree', 'dark_green'),
('road', 'gray')
]:
output_flat[masks[category]] = self.colors[color_name]
output_flat[terrain_mask] = self.colors['brown']
output_flat[building_mask] = self.colors['white']
# Reshape and clean up
segmented = output.reshape(height, width, 3)
segmented = self.apply_morphological_cleanup(segmented)
return segmented
def apply_morphological_cleanup(self, segmented):
"""Apply optimized morphological operations for cleanup"""
for _ in range(2): # Two passes for better results
for color_name, color_value in self.colors.items():
if color_name in ['white', 'dark_green']: # Skip buildings and trees
continue
color_mask = cp.all(segmented == color_value, axis=2)
dilated = binary_dilation(color_mask, structure=self.cleanup_kernel)
building_pixels = cp.all(segmented == self.colors['white'], axis=2)
neighbor_count = cp.sum(dilated)
if neighbor_count > 5:
segmented[building_pixels & dilated] = color_value
return segmented
def estimate_heights_gpu(self, img, segmented):
"""GPU-accelerated height estimation with roof consideration"""
gpu_segmented = cp.asarray(segmented)
buildings_mask = cp.logical_or(
cp.all(gpu_segmented == self.colors['white'], axis=2),
cp.all(gpu_segmented == self.colors['salmon'], axis=2)
)
shadows_mask = cp.all(gpu_segmented == self.colors['black'], axis=2)
# Connected components labeling on GPU
labeled_array, num_features = cp_label(buildings_mask)
# Calculate areas using GPU
areas = cp.bincount(labeled_array.ravel())[1:]
max_area = cp.max(areas) if len(areas) > 0 else 1
height_map = cp.zeros_like(labeled_array, dtype=cp.float32)
# Process each building/roof
for label in range(1, num_features + 1):
building_mask = (labeled_array == label)
if not cp.any(building_mask):
continue
area = areas[label-1]
size_factor = 0.3 + 0.7 * (area / max_area)
# Check if this is a roof (salmon color)
is_roof = cp.any(cp.all(gpu_segmented[building_mask] == self.colors['salmon'], axis=1))
# Adjust height for roofs (typically smaller residential buildings)
if is_roof:
size_factor *= 0.8 # Slightly lower height for residential buildings
# Calculate shadow influence
dilated = binary_dilation(building_mask, structure=cp.ones((5,5)))
shadow_ratio = cp.sum(dilated & shadows_mask) / cp.sum(dilated)
shadow_factor = 0.2 + 0.8 * shadow_ratio
final_height = size_factor * shadow_factor
height_map[building_mask] = final_height
return height_map.get() * 0.25
def generate_mesh_gpu(self, height_map, texture_img):
"""Generate optimized 3D mesh with tree geometry"""
height_map_gpu = cp.asarray(height_map)
texture_img_gpu = cp.asarray(texture_img)
height, width = height_map.shape
# Generate base vertices
x, z = cp.meshgrid(cp.arange(width), cp.arange(height))
vertices = cp.stack([x, height_map_gpu * self.building_height, z], axis=-1)
vertices = vertices.reshape(-1, 3)
# Detect tree areas and generate tree geometry
tree_mask = cp.all(texture_img_gpu == self.colors['dark_green'], axis=2)
vertices = self.generate_tree_vertices(tree_mask, vertices)
# Normalize coordinates
scale = max(width, height)
vertices[:, 0] = vertices[:, 0] / scale * 2 - (width / scale)
vertices[:, 2] = vertices[:, 2] / scale * 2 - (height / scale)
vertices[:, 1] = vertices[:, 1] * 2 - 1
# Generate optimized faces and UVs
faces = self.generate_faces_gpu(height, width)
uvs = self.generate_uvs_gpu(vertices, width, height)
# Create textured mesh using the original texture image
return self.create_textured_mesh(vertices, faces, uvs, texture_img)
@staticmethod
def generate_faces_gpu(height, width):
"""Generate optimized face indices"""
i, j = cp.meshgrid(cp.arange(height-1), cp.arange(width-1), indexing='ij')
v0 = (i * width + j).flatten()
v1 = v0 + 1
v2 = ((i + 1) * width + j).flatten()
v3 = v2 + 1
return cp.vstack((
cp.column_stack((v0, v2, v1)),
cp.column_stack((v1, v2, v3))
))
@staticmethod
def generate_uvs_gpu(vertices, width, height):
"""Generate optimized UV coordinates"""
uvs = cp.zeros((vertices.shape[0], 2), order='C')
# Fix: Use width-1 and height-1 for proper UV scaling, and swap coordinates
uvs[:, 0] = vertices[:, 0] * width / ((width - 1) * 2) + 0.5 # Scale and center X coordinate
uvs[:, 1] = 1 - (vertices[:, 2] * height / ((height - 1) * 2) + 0.5) # Scale, flip and center Y coordinate
return uvs
@staticmethod
def create_textured_mesh(vertices, faces, uvs, texture_img):
"""Create textured mesh with proper color conversion"""
# Ensure we're working with the original texture image
if isinstance(texture_img, cp.ndarray):
texture_img = texture_img.get()
# Convert texture image to RGB format for PIL
if len(texture_img.shape) == 3:
if texture_img.shape[2] == 4: # BGRA
texture_img = cv2.cvtColor(texture_img, cv2.COLOR_BGRA2RGB)
else: # BGR
texture_img = cv2.cvtColor(texture_img, cv2.COLOR_BGR2RGB)
# Create PIL Image from the texture
texture_pil = Image.fromarray(texture_img)
# Create the mesh with texture
mesh = trimesh.Trimesh(
vertices=vertices.get() if isinstance(vertices, cp.ndarray) else vertices,
faces=faces.get() if isinstance(faces, cp.ndarray) else faces,
visual=trimesh.visual.TextureVisuals(
uv=uvs.get() if isinstance(uvs, cp.ndarray) else uvs,
image=texture_pil
)
)
return mesh
def generate_and_process_map(prompt: str) -> tuple[str | None, np.ndarray | None]:
"""Generate satellite image from prompt and convert to 3D model using GPU acceleration"""
try:
# Set dimensions and device
width = height = 1024
# Generate random seed
seed = np.random.randint(0, np.iinfo(np.int32).max)
# Set random seeds
torch.manual_seed(seed)
np.random.seed(seed)
# Generate satellite image using FLUX
generator = torch.Generator(device=device).manual_seed(seed)
generated_image = flux_pipe(
prompt=f"satellite view in the style of TOK, {prompt}",
width=width,
height=height,
num_inference_steps=25,
generator=generator,
guidance_scale=7.5
).images[0]
# Convert PIL Image to OpenCV format
cv_image = cv2.cvtColor(np.array(generated_image), cv2.COLOR_RGB2BGR)
# Initialize GPU-accelerated generator
generator = GPUSatelliteModelGenerator(building_height=0.09)
# Process image using GPU
print("Segmenting image using GPU...")
segmented_img = generator.segment_image_gpu(cv_image)
print("Estimating heights using GPU...")
height_map = generator.estimate_heights_gpu(cv_image, segmented_img)
# Generate mesh using GPU-accelerated calculations
print("Generating mesh using GPU...")
mesh = generator.generate_mesh_gpu(height_map, cv_image)
# Export to GLB
temp_dir = tempfile.mkdtemp()
output_path = os.path.join(temp_dir, 'output.glb')
mesh.export(output_path)
# Save segmented image to a temporary file
segmented_path = os.path.join(temp_dir, 'segmented.png')
cv2.imwrite(segmented_path, segmented_img.get())
return output_path, segmented_path
except Exception as e:
print(f"Error during generation: {str(e)}")
import traceback
traceback.print_exc()
return None, None
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Text to Map")
gr.Markdown("Generate a 3D map from text!")
with gr.Row():
prompt_input = gr.Text(
label="Enter your prompt",
placeholder="classic american town"
)
with gr.Row():
generate_btn = gr.Button("Generate", variant="primary")
with gr.Row():
with gr.Column():
model_output = gr.Model3D(
label="Generated 3D Map",
clear_color=[0.0, 0.0, 0.0, 0.0],
)
with gr.Column():
segmented_output = gr.Image(
label="Segmented Map",
type="filepath"
)
# Event handler
generate_btn.click(
fn=generate_and_process_map,
inputs=[prompt_input],
outputs=[model_output, segmented_output],
api_name="generate"
)
if __name__ == "__main__":
# Initialize FLUX pipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "jbilcke-hf/flux-satellite"
flux_pipe = DiffusionPipeline.from_pretrained(
repo_id,
torch_dtype=torch.bfloat16
)
flux_pipe.load_lora_weights(adapter_id)
flux_pipe = flux_pipe.to(device)
# Launch Gradio app
demo.queue().launch() |