fpurl / app.py
joermd's picture
Update app.py
a54100a verified
raw
history blame
11 kB
import streamlit as st
from streamlit_option_menu import option_menu
import requests
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from datetime import datetime
import httpx
import asyncio
import aiohttp
from bs4 import BeautifulSoup
import whois
import ssl
import socket
import dns.resolver
from urllib.parse import urlparse
import json
import numpy as np
from PIL import Image
import io
import time
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import timedelta
import tldextract
from concurrent.futures import ThreadPoolExecutor
import re
from collections import Counter
from wordcloud import WordCloud
import advertools as adv
from collections import Counter
# Page configuration
st.set_page_config(
layout="wide",
page_title="محلل المواقع المتقدم | Website Analyzer Pro",
page_icon="🔍",
initial_sidebar_state="expanded"
)
# Custom CSS
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Tajawal:wght@400;500;700&display=swap');
* {
font-family: 'Tajawal', sans-serif;
}
.main {
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
padding: 20px;
}
.metric-card {
background: white;
border-radius: 15px;
padding: 20px;
box-shadow: 0 4px 15px rgba(0,0,0,0.1);
transition: all 0.3s ease;
margin-bottom: 20px;
}
.metric-card:hover {
transform: translateY(-5px);
box-shadow: 0 8px 25px rgba(0,0,0,0.15);
}
.metric-value {
font-size: 2em;
font-weight: bold;
color: #2196F3;
}
.metric-label {
color: #666;
font-size: 1.1em;
}
.stButton>button {
background: linear-gradient(45deg, #2196F3, #21CBF3);
color: white;
border-radius: 25px;
padding: 15px 30px;
border: none;
box-shadow: 0 4px 15px rgba(33,150,243,0.3);
transition: all 0.3s ease;
font-size: 1.1em;
font-weight: 500;
width: 100%;
}
.stButton>button:hover {
transform: translateY(-2px);
box-shadow: 0 6px 20px rgba(33,150,243,0.4);
}
h1, h2, h3 {
color: #1E3D59;
font-weight: 700;
}
.stTextInput>div>div>input {
border-radius: 10px;
border: 2px solid #E0E0E0;
padding: 12px;
font-size: 1.1em;
transition: all 0.3s ease;
}
.stTextInput>div>div>input:focus {
border-color: #2196F3;
box-shadow: 0 0 0 2px rgba(33,150,243,0.2);
}
.streamlit-expanderHeader {
background-color: white;
border-radius: 10px;
padding: 10px;
box-shadow: 0 2px 8px rgba(0,0,0,0.1);
}
.stProgress > div > div > div {
background-color: #2196F3;
}
.tab-content {
padding: 20px;
background: white;
border-radius: 15px;
box-shadow: 0 4px 15px rgba(0,0,0,0.1);
}
.insight-card {
background: #f8f9fa;
border-right: 4px solid #2196F3;
padding: 15px;
margin: 10px 0;
border-radius: 8px;
}
.chart-container {
background: white;
padding: 20px;
border-radius: 15px;
box-shadow: 0 4px 15px rgba(0,0,0,0.1);
margin: 20px 0;
}
</style>
""", unsafe_allow_html=True)
class AdvancedWebsiteAnalyzer:
def __init__(self):
self.headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
}
self.history = self.load_history()
# [Previous methods remain the same until analyze_seo]
async def analyze_seo(self, url):
try:
async with httpx.AsyncClient() as client:
response = await client.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
content_analysis = self._analyze_content(soup)
links_analysis = self._analyze_links(soup)
keywords_analysis = self._extract_keywords(soup)
seo_analysis = {
"تحليل العنوان": self._analyze_title(soup),
"تحليل الوصف": self._analyze_description(soup),
"تحليل الكلمات المفتاحية": keywords_analysis,
"تحليل العناوين": self._analyze_headings(soup),
"تحليل الروابط": links_analysis,
"تحليل المحتوى": content_analysis,
"تقييم SEO": self._calculate_seo_score(soup),
"توصيات تحسين SEO": self._get_seo_recommendations(soup)
}
return seo_analysis
except Exception as e:
return {"error": f"خطأ في تحليل SEO: {str(e)}"}
def _extract_keywords(self, soup):
# Add implementation for keyword extraction
pass
def _calculate_seo_score(self, soup):
# Add implementation for SEO scoring
pass
def _get_seo_recommendations(self, soup):
# Add implementation for SEO recommendations
pass
def _analyze_content(self, soup):
"""
Analyzes webpage content for SEO factors
"""
try:
text_content = ' '.join([p.text.strip() for p in soup.find_all(['p', 'div', 'article', 'section'])])
headings = {f'h{i}': len(soup.find_all(f'h{i}')) for i in range(1, 7)}
words = text_content.split()
word_count = len(words)
readability_score = self._calculate_readability(text_content)
keyword_density = self._calculate_keyword_density(text_content)
images = soup.find_all('img')
images_with_alt = len([img for img in images if img.get('alt')])
quality_score = self._calculate_content_quality_score(
word_count,
readability_score,
images_with_alt,
len(images),
headings
)
return {
"إحصائيات المحتوى": {
"عدد الكلمات": word_count,
"مستوى القراءة": readability_score,
"نسبة الصور مع نص بديل": f"{(images_with_alt/len(images)*100 if images else 0):.1f}%",
"توزيع العناوين": headings,
},
"تحليل الكلمات المفتاحية": {
"كثافة الكلمات الرئيسية": keyword_density,
"الكلمات الأكثر تكراراً": self._get_top_words(text_content, 5)
},
"تقييم جودة المحتوى": {
"الدرجة": quality_score,
"التقييم": self._get_content_rating(quality_score),
"التوصيات": self._get_content_recommendations(
word_count,
readability_score,
images_with_alt,
len(images),
headings
)
}
}
except Exception as e:
return {"error": f"خطأ في تحليل المحتوى: {str(e)}"}
def _calculate_readability(self, text):
# Add implementation for readability calculation
pass
def _calculate_keyword_density(self, text):
# Add implementation for keyword density calculation
pass
def _calculate_content_quality_score(self, word_count, readability, alt_images, total_images, headings):
score = 100
if word_count < 300:
score -= 20
elif word_count < 600:
score -= 10
if readability < 40:
score -= 15
elif readability < 60:
score -= 10
if total_images > 0:
alt_ratio = alt_images / total_images
if alt_ratio < 0.5:
score -= 15
elif alt_ratio < 0.8:
score -= 10
if headings.get('h1', 0) == 0:
score -= 10
if headings.get('h1', 0) > 1:
score -= 5
if headings.get('h2', 0) == 0:
score -= 5
return max(0, score)
def _get_content_rating(self, score):
if score >= 90:
return "ممتاز"
elif score >= 80:
return "جيد جداً"
elif score >= 70:
return "جيد"
elif score >= 60:
return "مقبول"
else:
return "يحتاج تحسين"
def _get_content_recommendations(self, word_count, readability, alt_images, total_images, headings):
recommendations = []
if word_count < 300:
recommendations.append({
"المشكلة": "محتوى قصير جداً",
"الحل": "زيادة المحتوى إلى 300 كلمة على الأقل",
"الأولوية": "عالية"
})
if readability < 60:
recommendations.append({
"المشكلة": "صعوبة قراءة المحتوى",
"الحل": "تبسيط الجمل واستخدام لغة أسهل",
"الأولوية": "متوسطة"
})
if total_images > 0 and (alt_images / total_images) < 0.8:
recommendations.append({
"المشكلة": "نقص في النصوص البديلة للصور",
"الحل": "إضافة نص بديل وصفي لجميع الصور",
"الأولوية": "عالية"
})
if headings.get('h1', 0) != 1:
recommendations.append({
"المشكلة": "عدد غير مناسب من عناوين H1",
"الحل": "استخدام عنوان H1 واحد فقط للصفحة",
"الأولوية": "عالية"
})
return recommendations if recommendations else [{
"المشكلة": "لا توجد مشاكل واضحة",
"الحل": "الاستمرار في تحديث المحتوى بشكل دوري",
"الأولوية": "منخفضة"
}]
def _get_top_words(self, text, count=5):
stop_words = set(['و', 'في', 'من', 'على', 'the', 'and', 'in', 'of', 'to'])
words = text.lower().split()
word_freq = Counter(word for word in words if word not in stop_words and len(word) > 2)
return {word: count for word, count in word_freq.most_common(count)}