File size: 6,528 Bytes
87340ea
10e9b7d
cd32eb4
10e9b7d
95555bb
 
87340ea
2c0f430
87340ea
95555bb
 
 
 
 
87340ea
95555bb
 
cd32eb4
 
95555bb
9ff1f1d
cd32eb4
 
 
9ff1f1d
cd32eb4
 
 
 
 
 
 
 
 
 
 
 
95555bb
cd32eb4
95555bb
 
 
 
 
 
 
 
 
 
7e4a06b
95555bb
 
e80aab9
95555bb
 
 
 
cd32eb4
31243f4
95555bb
31243f4
95555bb
 
cd32eb4
95555bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd32eb4
95555bb
 
 
3c4371f
95555bb
e80aab9
cd32eb4
95555bb
 
 
cd32eb4
 
 
 
 
 
 
 
 
95555bb
e25ef11
95555bb
 
 
 
 
 
 
 
 
 
 
e80aab9
 
 
95555bb
cd32eb4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
""" Basic Agent Evaluation Runner"""
import os
import inspect
import gradio as gr
import requests
import pandas as pd
from langchain_core.messages import HumanMessage
from veryfinal import build_graph

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Basic Agent Definition ---
class BasicAgent:
    """A langgraph agent."""
    def __init__(self):
        print("BasicAgent initialized.")
        self.graph = build_graph(provider="groq")  # Using Groq as default

    def __call__(self, question: str) -> str:
        print(f"Agent received question: {question}")
        # Wrap the question in a HumanMessage from langchain_core
        messages = [HumanMessage(content=question)]
        config = {"configurable": {"thread_id": f"eval_{hash(question)}"}}
        
        try:
            result = self.graph.invoke({"messages": messages}, config)
            answer = result['messages'][-1].content
            
            # Extract final answer if present
            if "FINAL ANSWER:" in answer:
                return answer.split("FINAL ANSWER:")[-1].strip()
            else:
                return answer.strip()
                
        except Exception as e:
            return f"Error: {str(e)}"

def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except Exception as e:
        status_message = f"Submission Failed: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df

# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# LangGraph Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1. Log in to your Hugging Face account using the button below.
        2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        
        **Agent Features:**
        - Uses FAISS vector database for similar question retrieval
        - Includes mathematical calculation tools
        - Web search capabilities (Tavily, Wikipedia, ArXiv)
        - Rate limiting for free tier models
        - Best free models: Groq Llama 3.3 70B, Gemini 2.0 Flash, NVIDIA Llama 3.1 70B
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    demo.launch(debug=True, share=False)