File size: 10,777 Bytes
10e9b7d
 
eccf8e4
3c4371f
1a8d658
57f85de
1a8d658
57f85de
bd5a767
57f85de
e6bc26b
1a8d658
 
 
 
 
b6e9bbc
1a8d658
 
 
aed7b67
 
1a8d658
 
bd5a767
1a8d658
 
 
bd5a767
1a8d658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd5a767
1a8d658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4021bf3
cab0d3f
1a8d658
7e4a06b
bd5a767
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
31243f4
1a8d658
31243f4
3c4371f
31243f4
bd5a767
36ed51a
c1fd3d2
3c4371f
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
bd5a767
 
31243f4
e80aab9
31243f4
 
3c4371f
bd5a767
 
 
7d65c66
31243f4
 
e80aab9
7d65c66
 
3c4371f
31243f4
 
 
1a8d658
 
31243f4
 
 
 
1a8d658
7d65c66
 
31243f4
bd5a767
 
31243f4
 
3c4371f
31243f4
 
7d65c66
3c4371f
31243f4
e80aab9
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
31243f4
0ee0419
e514fd7
 
81917a3
e514fd7
 
 
 
 
1a8d658
e514fd7
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
7d65c66
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
 
bd5a767
7d65c66
3c4371f
 
7d65c66
3c4371f
7d65c66
 
bd5a767
7d65c66
 
 
 
 
 
3c4371f
 
cab0d3f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import os
import gradio as gr
import requests
import pandas as pd
import base64
from dotenv import load_dotenv
from groq import Groq

# Load environment variables
load_dotenv()

# --- Groq Multimodal Agent ---
class GroqMultimodalAgent:
    def __init__(self):
        self.client = Groq(api_key=os.getenv("GROQ_API_KEY"))
        self.llava_model = "llava-v1.5-7b-4096-preview"  # For image Q&A
        self.llama_model = "meta-llama/llama-4-scout-17b-16e-instruct"            # For text Q&A
        self.whisper_model = "whisper-large-v3"          # For audio transcription
        self.instructions = (
            "You are a helpful assistant. For every question or media, reply with only the answer—no explanation, "
            "no units, and no extra words. If the answer is a number, just return the number. "
            "If it is a word or phrase, return only that. If it is a list, return a comma-separated list with no extra words. "
            "Do not include any prefix, suffix, or explanation."
        )

    def _encode_image(self, image_path):
        with open(image_path, "rb") as img_file:
            return base64.b64encode(img_file.read()).decode("utf-8")

    def _process_image(self, image_path, question):
        base64_image = self._encode_image(image_path)
        prompt = f"{self.instructions}\n\n{question}"
        chat_completion = self.client.chat.completions.create(
            model=self.llava_model,
            messages=[
                {"role": "user", "content": [
                    {"type": "text", "text": prompt},
                    {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
                ]}
            ]
        )
        answer = chat_completion.choices[0].message.content.strip()
        return self._extract_final_answer(answer)

    def _process_audio(self, audio_path):
        with open(audio_path, "rb") as audio_file:
            transcript = self.client.audio.transcriptions.create(
                model=self.whisper_model,
                file=audio_file
            )
        return transcript.text.strip()

    def _process_text(self, question):
        prompt = f"{self.instructions}\n\n{question}"
        chat_completion = self.client.chat.completions.create(
            model=self.llama_model,
            messages=[{"role": "user", "content": prompt}]
        )
        answer = chat_completion.choices[0].message.content.strip()
        return self._extract_final_answer(answer)

    def _extract_final_answer(self, llm_output: str) -> str:
        for prefix in ["FINAL ANSWER:", "Final answer:", "final answer:"]:
            if llm_output.lower().startswith(prefix.lower()):
                return llm_output[len(prefix):].strip()
        return llm_output

    def __call__(self, question: str, image_path: str = None, audio_path: str = None) -> str:
        if image_path:
            return self._process_image(image_path, question)
        elif audio_path:
            return self._process_audio(audio_path)
        else:
            return self._process_text(question)

# --- Gradio Leaderboard Submission App ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")
    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    try:
        agent = GroqMultimodalAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
        print(f"Error decoding JSON response from questions endpoint: {e}")
        print(f"Response text: {response.text[:500]}")
        return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        image_path = item.get("image_path", None)
        audio_path = item.get("audio_path", None)
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text, image_path=image_path, audio_path=audio_path)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df

# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a separate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)