File size: 10,861 Bytes
b1b6e20
25c1140
1fa6961
25c1140
 
1fa6961
25c1140
b1b6e20
 
 
25c1140
1fa6961
25c1140
b1b6e20
25c1140
 
 
 
b1b6e20
 
 
 
 
 
 
cc467c2
b1b6e20
0f81d99
25c1140
0f81d99
25c1140
0f81d99
 
 
25c1140
0f81d99
 
 
 
25c1140
0f81d99
 
25c1140
0f81d99
 
 
b102339
b1b6e20
25c1140
 
b1b6e20
0f81d99
25c1140
 
b1b6e20
 
 
 
 
 
1fa6961
 
25c1140
b1b6e20
 
 
 
 
 
 
1fa6961
 
25c1140
b1b6e20
 
 
 
 
 
 
1fa6961
 
25c1140
b1b6e20
 
 
 
 
 
 
1fa6961
 
 
 
25c1140
b1b6e20
 
 
 
 
 
 
 
1fa6961
25c1140
b1b6e20
 
 
 
 
7c04f3e
25c1140
b1b6e20
 
 
 
 
 
 
7c04f3e
 
1fa6961
b1b6e20
 
 
25c1140
b1b6e20
 
cc467c2
b1b6e20
 
 
 
 
 
 
 
cc467c2
b1b6e20
cc467c2
b1b6e20
 
 
b102339
b1b6e20
 
25c1140
b1b6e20
 
 
 
 
 
 
 
25c1140
b1b6e20
0f81d99
b1b6e20
 
 
25c1140
b1b6e20
 
 
 
 
 
 
 
 
 
 
 
 
 
25c1140
b1b6e20
25c1140
b1b6e20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25c1140
b1b6e20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25c1140
b1b6e20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25c1140
b1b6e20
 
 
 
 
 
 
25c1140
b1b6e20
0f81d99
b1b6e20
 
 
 
 
 
 
 
 
 
 
 
 
 
25c1140
b1b6e20
 
 
 
 
 
 
 
 
 
 
 
0f81d99
b1b6e20
0f81d99
b1b6e20
 
 
 
 
 
 
 
 
0f81d99
b1b6e20
 
 
0f81d99
b1b6e20
7c04f3e
b1b6e20
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
"""LangGraph Agent with FAISS Vector Store and Custom Tools"""
import os, time, random
from dotenv import load_dotenv
from typing import List, Dict, Any, TypedDict, Annotated
import operator

# LangGraph imports
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langgraph.checkpoint.memory import MemorySaver

# LangChain imports
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain_groq import ChatGroq
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_nvidia_ai_endpoints import ChatNVIDIA
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.vectorstores import FAISS
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
from langchain.tools.retriever import create_retriever_tool
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import JSONLoader

load_dotenv()

# Advanced Rate Limiter (SILENT)
class AdvancedRateLimiter:
    def __init__(self, requests_per_minute: int):
        self.requests_per_minute = requests_per_minute
        self.request_times = []
        
    def wait_if_needed(self):
        current_time = time.time()
        # Clean old requests (older than 1 minute)
        self.request_times = [t for t in self.request_times if current_time - t < 60]
        
        # Check if we need to wait
        if len(self.request_times) >= self.requests_per_minute:
            wait_time = 60 - (current_time - self.request_times[0]) + random.uniform(2, 8)
            time.sleep(wait_time)
        
        # Record this request
        self.request_times.append(current_time)

# Initialize rate limiters
groq_limiter = AdvancedRateLimiter(requests_per_minute=30)
gemini_limiter = AdvancedRateLimiter(requests_per_minute=2)
nvidia_limiter = AdvancedRateLimiter(requests_per_minute=5)

# Custom Tools
@tool
def multiply(a: int, b: int) -> int:
    """Multiply two numbers.
    Args:
        a: first int
        b: second int
    """
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a - b

@tool
def divide(a: int, b: int) -> float:
    """Divide two numbers.
    
    Args:
        a: first int
        b: second int
    """
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Get the modulus of two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a % b

@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a query and return maximum 2 results.
    
    Args:
        query: The search query."""
    try:
        time.sleep(random.uniform(1, 3))
        search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
        formatted_search_docs = "\n\n---\n\n".join(
            [
                f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
                for doc in search_docs
            ])
        return formatted_search_docs
    except Exception as e:
        return f"Wikipedia search failed: {str(e)}"

@tool
def web_search(query: str) -> str:
    """Search Tavily for a query and return maximum 3 results.
    
    Args:
        query: The search query."""
    try:
        time.sleep(random.uniform(2, 5))
        search_docs = TavilySearchResults(max_results=3).invoke(query=query)
        formatted_search_docs = "\n\n---\n\n".join(
            [
                f'<Document source="{doc.get("url", "")}" />\n{doc.get("content", "")}\n</Document>'
                for doc in search_docs
            ])
        return formatted_search_docs
    except Exception as e:
        return f"Web search failed: {str(e)}"

@tool
def arvix_search(query: str) -> str:
    """Search Arxiv for a query and return maximum 3 result.
    
    Args:
        query: The search query."""
    try:
        time.sleep(random.uniform(1, 4))
        search_docs = ArxivLoader(query=query, load_max_docs=3).load()
        formatted_search_docs = "\n\n---\n\n".join(
            [
                f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
                for doc in search_docs
            ])
        return formatted_search_docs
    except Exception as e:
        return f"ArXiv search failed: {str(e)}"

# Load and process JSONL data for FAISS vector store
def setup_faiss_vector_store():
    """Setup FAISS vector database from JSONL metadata"""
    try:
        jq_schema = """
        {
          page_content: .Question,
          metadata: {
            task_id: .task_id,
            Level: .Level,
            Final_answer: ."Final answer",
            file_name: .file_name,
            Steps: .["Annotator Metadata"].Steps,
            Number_of_steps: .["Annotator Metadata"]["Number of steps"],
            How_long: .["Annotator Metadata"]["How long did this take?"],
            Tools: .["Annotator Metadata"].Tools,
            Number_of_tools: .["Annotator Metadata"]["Number of tools"]
          }
        }
        """
        
        # Load documents
        json_loader = JSONLoader(file_path="metadata.jsonl", jq_schema=jq_schema, json_lines=True, text_content=False)
        json_docs = json_loader.load()
        
        # Split documents
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=200)
        json_chunks = text_splitter.split_documents(json_docs)
        
        # Create FAISS vector store
        embeddings = NVIDIAEmbeddings(
            model="nvidia/nv-embedqa-e5-v5",
            api_key=os.getenv("NVIDIA_API_KEY")
        )
        vector_store = FAISS.from_documents(json_chunks, embeddings)
        
        return vector_store
    except Exception as e:
        print(f"FAISS vector store setup failed: {e}")
        return None

# Load system prompt
try:
    with open("system_prompt.txt", "r", encoding="utf-8") as f:
        system_prompt = f.read()
except FileNotFoundError:
    system_prompt = """You are a helpful assistant tasked with answering questions using a set of tools. 
    Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: 
    FINAL ANSWER: [YOUR FINAL ANSWER]. 
    YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
    Your answer should only start with "FINAL ANSWER: ", then follows with the answer."""

# System message
sys_msg = SystemMessage(content=system_prompt)

# Setup FAISS vector store and retriever
vector_store = setup_faiss_vector_store()
if vector_store:
    retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 3})
    retriever_tool = create_retriever_tool(
        retriever=retriever,
        name="Question_Search",
        description="A tool to retrieve similar questions from a vector store.",
    )
else:
    retriever_tool = None

# All tools
all_tools = [
    multiply,
    add,
    subtract,
    divide,
    modulus,
    wiki_search,
    web_search,
    arvix_search,
]

if retriever_tool:
    all_tools.append(retriever_tool)

# Build graph function
def build_graph(provider: str = "groq"):
    """Build the LangGraph with rate limiting"""
    
    # Initialize LLMs with best free models
    if provider == "google":
        llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash-thinking-exp", temperature=0)
    elif provider == "groq":
        llm = ChatGroq(model="llama-3.3-70b-versatile", temperature=0)
    elif provider == "nvidia":
        llm = ChatNVIDIA(model="meta/llama-3.1-70b-instruct", temperature=0)
    else:
        raise ValueError("Invalid provider. Choose 'google', 'groq' or 'nvidia'.")
    
    # Bind tools to LLM
    llm_with_tools = llm.bind_tools(all_tools)

    # Node functions
    def assistant(state: MessagesState):
        """Assistant node with rate limiting"""
        if provider == "groq":
            groq_limiter.wait_if_needed()
        elif provider == "google":
            gemini_limiter.wait_if_needed()
        elif provider == "nvidia":
            nvidia_limiter.wait_if_needed()
            
        return {"messages": [llm_with_tools.invoke(state["messages"])]}
    
    def retriever_node(state: MessagesState):
        """Retriever node"""
        if vector_store and len(state["messages"]) > 0:
            try:
                similar_questions = vector_store.similarity_search(state["messages"][-1].content, k=1)
                if similar_questions:
                    example_msg = HumanMessage(
                        content=f"Here I provide a similar question and answer for reference: \n\n{similar_questions[0].page_content}",
                    )
                    return {"messages": [sys_msg] + state["messages"] + [example_msg]}
            except Exception as e:
                print(f"Retriever error: {e}")
        
        return {"messages": [sys_msg] + state["messages"]}

    # Build graph
    builder = StateGraph(MessagesState)
    builder.add_node("retriever", retriever_node)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(all_tools))
    builder.add_edge(START, "retriever")
    builder.add_edge("retriever", "assistant")
    builder.add_conditional_edges("assistant", tools_condition)
    builder.add_edge("tools", "assistant")

    # Compile graph with memory
    memory = MemorySaver()
    return builder.compile(checkpointer=memory)

# Test
if __name__ == "__main__":
    question = "What are the names of the US presidents who were assassinated?"
    # Build the graph
    graph = build_graph(provider="groq")
    # Run the graph
    messages = [HumanMessage(content=question)]
    config = {"configurable": {"thread_id": "test_thread"}}
    result = graph.invoke({"messages": messages}, config)
    for m in result["messages"]:
        m.pretty_print()