File size: 9,007 Bytes
38a1a77 10e9b7d 95555bb 87340ea decae1d 87340ea 38a1a77 95555bb 38a1a77 95555bb 38a1a77 cd32eb4 95555bb 80c837c 38a1a77 e6232e1 38a1a77 5a68159 38a1a77 c3f6914 cd32eb4 38a1a77 80c837c 38a1a77 95555bb 80c837c 95555bb 7e4a06b 95555bb e80aab9 95555bb 38a1a77 31243f4 38a1a77 31243f4 95555bb 38a1a77 95555bb 38a1a77 95555bb 80c837c 95555bb 80c837c 95555bb 38a1a77 95555bb 38a1a77 95555bb 38a1a77 95555bb 38a1a77 95555bb 38a1a77 95555bb 38a1a77 80c837c 38a1a77 95555bb 38a1a77 95555bb 38a1a77 95555bb 38a1a77 95555bb cd32eb4 95555bb 3c4371f 38a1a77 e80aab9 38a1a77 95555bb 38a1a77 95555bb e25ef11 95555bb 38a1a77 95555bb e80aab9 38a1a77 cd32eb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
""" Enhanced Multi-LLM Agent Evaluation Runner with Agno Integration"""
import os
import gradio as gr
import requests
import pandas as pd
from langchain_core.messages import HumanMessage
from veryfinal import build_graph
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Enhanced Agent Definition ---
class EnhancedMultiLLMAgent:
"""A multi-provider LangGraph agent with Agno-style reasoning capabilities."""
def __init__(self):
print("Enhanced Multi-LLM Agent with Agno Integration initialized.")
try:
self.graph = build_graph(provider="groq")
print("Enhanced Multi-LLM Graph built successfully.")
except Exception as e:
print(f"Error building graph: {e}")
self.graph = None
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
if self.graph is None:
return "Error: Agent not properly initialized"
# CRITICAL FIX: Always pass the complete state expected by the graph
state = {
"messages": [HumanMessage(content=question)],
"query": question, # This was the critical missing field
"agent_type": "",
"final_answer": "",
"perf": {},
"agno_resp": "",
"tools_used": [],
"reasoning": "",
"confidence": ""
}
# CRITICAL FIX: Always provide the required config with thread_id
config = {"configurable": {"thread_id": f"eval_{hash(question)}"}}
try:
result = self.graph.invoke(state, config)
# Handle different response formats
if isinstance(result, dict):
if 'messages' in result and result['messages']:
answer = result['messages'][-1].content
elif 'final_answer' in result:
answer = result['final_answer']
else:
answer = str(result)
else:
answer = str(result)
# Extract final answer if present
if "FINAL ANSWER:" in answer:
return answer.split("FINAL ANSWER:")[-1].strip()
else:
return answer.strip()
except Exception as e:
error_msg = f"Error: {str(e)}"
print(error_msg)
return error_msg
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the Enhanced Multi-LLM Agent on them,
submits all answers, and displays the results.
"""
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = EnhancedMultiLLMAgent()
if agent.graph is None:
return "Error: Failed to initialize agent properly", None
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "No space ID available"
print(f"Agent code URL: {agent_code}")
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running Enhanced Multi-LLM agent with Agno integration on {len(questions_data)} questions...")
for i, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
print(f"Processing question {i+1}/{len(questions_data)}: {task_id}")
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": submitted_answer[:200] + "..." if len(submitted_answer) > 200 else submitted_answer
})
except Exception as e:
error_msg = f"AGENT ERROR: {e}"
print(f"Error running agent on task {task_id}: {e}")
answers_payload.append({"task_id": task_id, "submitted_answer": error_msg})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": error_msg
})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Enhanced Multi-LLM Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
status_message = f"Submission Failed: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Enhanced Multi-LLM Agent with Agno Integration")
gr.Markdown(
"""
**Instructions:**
1. Log in to your Hugging Face account using the button below.
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
**Enhanced Agent Features:**
- **Multi-LLM Support**: Groq (Llama-3 8B/70B, DeepSeek), Google Gemini, NVIDIA NIM
- **Agno Integration**: Systematic reasoning with step-by-step analysis
- **Intelligent Routing**: Automatically selects best provider based on query complexity
- **Enhanced Tools**: Mathematical operations, web search, Wikipedia integration
- **Question-Answering**: Optimized for evaluation tasks with proper formatting
- **Error Handling**: Robust fallback mechanisms and comprehensive logging
**Routing Examples:**
- Standard: "What is the capital of France?" β Llama-3 8B
- Complex: "Analyze quantum computing principles" β Llama-3 70B
- Search: "Find information about Mercedes Sosa" β Search-Enhanced
- Agno: "agno llama-70: Systematic analysis of AI ethics" β Agno Llama-3 70B
- Provider-specific: "google: Explain machine learning" β Google Gemini
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " Enhanced Multi-LLM Agent with Agno Starting " + "-"*30)
demo.launch(debug=True, share=False)
|