File size: 12,833 Bytes
b857b00 25c1140 1fa6961 25c1140 1fa6961 25c1140 b1b6e20 25c1140 1fa6961 25c1140 b1b6e20 25c1140 b1b6e20 cc467c2 b1b6e20 0f81d99 b857b00 0f81d99 b857b00 0f81d99 b857b00 0f81d99 b857b00 0f81d99 25c1140 0f81d99 25c1140 0f81d99 25c1140 0f81d99 b857b00 0f81d99 b857b00 b102339 b857b00 0f81d99 25c1140 b1b6e20 b857b00 1fa6961 25c1140 b1b6e20 b857b00 1fa6961 25c1140 b1b6e20 b857b00 1fa6961 25c1140 b1b6e20 b857b00 1fa6961 25c1140 b1b6e20 b857b00 b1b6e20 1fa6961 25c1140 b1b6e20 b857b00 7c04f3e 25c1140 b1b6e20 7c04f3e 1fa6961 b1b6e20 b857b00 cc467c2 b1b6e20 cc467c2 b1b6e20 cc467c2 b1b6e20 b857b00 25c1140 b1b6e20 25c1140 b1b6e20 0f81d99 b857b00 b1b6e20 25c1140 b1b6e20 25c1140 b1b6e20 25c1140 b1b6e20 25c1140 b1b6e20 b857b00 b1b6e20 25c1140 b857b00 b1b6e20 b857b00 b1b6e20 b857b00 d52b24c b857b00 25c1140 b857b00 0f81d99 b857b00 b1b6e20 b857b00 b1b6e20 25c1140 b1b6e20 0f81d99 b1b6e20 0f81d99 b1b6e20 0f81d99 b1b6e20 0f81d99 b1b6e20 7c04f3e b1b6e20 b857b00 b1b6e20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
"""LangGraph Agent with Best Free Models and Minimal Rate Limits"""
import os, time, random
from dotenv import load_dotenv
from typing import List, Dict, Any, TypedDict, Annotated
import operator
# LangGraph imports
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langgraph.checkpoint.memory import MemorySaver
# LangChain imports
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain_groq import ChatGroq
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_nvidia_ai_endpoints import ChatNVIDIA
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.vectorstores import FAISS
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
from langchain.tools.retriever import create_retriever_tool
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import JSONLoader
load_dotenv()
# Advanced Rate Limiter with Exponential Backoff
class AdvancedRateLimiter:
def __init__(self, requests_per_minute: int, provider_name: str):
self.requests_per_minute = requests_per_minute
self.provider_name = provider_name
self.request_times = []
self.consecutive_failures = 0
def wait_if_needed(self):
current_time = time.time()
# Clean old requests (older than 1 minute)
self.request_times = [t for t in self.request_times if current_time - t < 60]
# Check if we need to wait
if len(self.request_times) >= self.requests_per_minute:
wait_time = 60 - (current_time - self.request_times[0]) + random.uniform(2, 8)
time.sleep(wait_time)
# Add exponential backoff for consecutive failures
if self.consecutive_failures > 0:
backoff_time = min(2 ** self.consecutive_failures, 60) + random.uniform(1, 3)
time.sleep(backoff_time)
# Record this request
self.request_times.append(current_time)
def record_success(self):
self.consecutive_failures = 0
def record_failure(self):
self.consecutive_failures += 1
# Initialize rate limiters based on search results
# Gemini 2.0 Flash-Lite: 30 RPM (highest free tier)
gemini_limiter = AdvancedRateLimiter(requests_per_minute=25, provider_name="Gemini") # Conservative
# Groq: Typically 30 RPM for free tier
groq_limiter = AdvancedRateLimiter(requests_per_minute=25, provider_name="Groq") # Conservative
# NVIDIA: Typically 5 RPM for free tier
nvidia_limiter = AdvancedRateLimiter(requests_per_minute=4, provider_name="NVIDIA") # Very conservative
# Initialize LLMs with best models and minimal rate limits
def get_best_models():
"""Get the best models with lowest rate limits"""
# Gemini 2.0 Flash-Lite - Best rate limit (30 RPM) with good performance
gemini_llm = ChatGoogleGenerativeAI(
model="gemini-2.0-flash-lite", # Best rate limit from search results
api_key=os.getenv("GOOGLE_API_KEY"),
temperature=0,
max_output_tokens=4000
)
# Groq Llama 3.3 70B - Fast and capable
groq_llm = ChatGroq(
model="llama-3.3-70b-versatile",
api_key=os.getenv("GROQ_API_KEY"),
temperature=0,
max_tokens=4000
)
# NVIDIA Llama 3.1 70B - Good for specialized tasks
nvidia_llm = ChatNVIDIA(
model="meta/llama-3.1-70b-instruct",
api_key=os.getenv("NVIDIA_API_KEY"),
temperature=0,
max_tokens=4000
)
return {
"gemini": gemini_llm,
"groq": groq_llm,
"nvidia": nvidia_llm
}
# Fallback strategy with rate limit handling
class ModelFallbackManager:
def __init__(self):
self.models = get_best_models()
self.limiters = {
"gemini": gemini_limiter,
"groq": groq_limiter,
"nvidia": nvidia_limiter
}
self.fallback_order = ["gemini", "groq", "nvidia"] # Order by rate limit capacity
def invoke_with_fallback(self, messages, max_retries=3):
"""Try models in order with rate limiting and fallbacks"""
for provider in self.fallback_order:
limiter = self.limiters[provider]
model = self.models[provider]
for attempt in range(max_retries):
try:
# Apply rate limiting
limiter.wait_if_needed()
# Try to invoke the model
response = model.invoke(messages)
limiter.record_success()
return response
except Exception as e:
error_msg = str(e).lower()
# Check if it's a rate limit error
if any(keyword in error_msg for keyword in ['rate limit', '429', 'quota', 'too many requests']):
limiter.record_failure()
wait_time = (2 ** attempt) + random.uniform(10, 30)
time.sleep(wait_time)
continue
else:
# Non-rate limit error, try next provider
break
# If all providers fail
raise Exception("All model providers failed or hit rate limits")
# Custom Tools
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract two numbers."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide two numbers."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers."""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return maximum 2 results."""
try:
time.sleep(random.uniform(1, 3))
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return formatted_search_docs
except Exception as e:
return f"Wikipedia search failed: {str(e)}"
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results."""
try:
time.sleep(random.uniform(2, 5))
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.get("url", "")}" />\n{doc.get("content", "")}\n</Document>'
for doc in search_docs
])
return formatted_search_docs
except Exception as e:
return f"Web search failed: {str(e)}"
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result."""
try:
time.sleep(random.uniform(1, 4))
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
])
return formatted_search_docs
except Exception as e:
return f"ArXiv search failed: {str(e)}"
# Setup FAISS vector store
def setup_faiss_vector_store():
"""Setup FAISS vector database from JSONL metadata"""
try:
jq_schema = """
{
page_content: .Question,
metadata: {
task_id: .task_id,
Level: .Level,
Final_answer: ."Final answer",
file_name: .file_name,
Steps: .["Annotator Metadata"].Steps,
Number_of_steps: .["Annotator Metadata"]["Number of steps"],
How_long: .["Annotator Metadata"]["How long did this take?"],
Tools: .["Annotator Metadata"].Tools,
Number_of_tools: .["Annotator Metadata"]["Number of tools"]
}
}
"""
json_loader = JSONLoader(file_path="metadata.jsonl", jq_schema=jq_schema, json_lines=True, text_content=False)
json_docs = json_loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=200)
json_chunks = text_splitter.split_documents(json_docs)
embeddings = NVIDIAEmbeddings(
model="nvidia/nv-embedqa-e5-v5",
api_key=os.getenv("NVIDIA_API_KEY")
)
vector_store = FAISS.from_documents(json_chunks, embeddings)
return vector_store
except Exception as e:
print(f"FAISS vector store setup failed: {e}")
return None
# Load system prompt
try:
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
except FileNotFoundError:
system_prompt = """You are a helpful assistant tasked with answering questions using a set of tools.
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
FINAL ANSWER: [YOUR FINAL ANSWER].
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings."""
sys_msg = SystemMessage(content=system_prompt)
# Setup vector store and retriever
vector_store = setup_faiss_vector_store()
if vector_store:
retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 3})
retriever_tool = create_retriever_tool(
retriever=retriever,
name="Question_Search",
description="A tool to retrieve similar questions from a vector store.",
)
else:
retriever_tool = None
# All tools
all_tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search]
if retriever_tool:
all_tools.append(retriever_tool)
# Build graph function with fallback manager
def build_graph(provider="groq"):
"""Build the LangGraph with rate limiting and fallbacks"""
fallback_manager = ModelFallbackManager()
# Create a wrapper LLM that uses fallback manager
class FallbackLLM:
def bind_tools(self, tools):
self.tools = tools
return self
def invoke(self, messages):
return fallback_manager.invoke_with_fallback(messages)
llm_with_tools = FallbackLLM().bind_tools(all_tools)
# Node functions
def assistant(state: MessagesState):
"""Assistant node with fallback handling"""
return {"messages": [llm_with_tools.invoke(state["messages"])]}
def retriever_node(state: MessagesState):
"""Retriever node"""
if vector_store and len(state["messages"]) > 0:
try:
similar_questions = vector_store.similarity_search(state["messages"][-1].content, k=1)
if similar_questions:
example_msg = HumanMessage(
content=f"Here I provide a similar question and answer for reference: \n\n{similar_questions[0].page_content}",
)
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
except Exception as e:
print(f"Retriever error: {e}")
return {"messages": [sys_msg] + state["messages"]}
# Build graph
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever_node)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(all_tools))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
# Compile graph with memory
memory = MemorySaver()
return builder.compile(checkpointer=memory)
# Test
if __name__ == "__main__":
question = "What are the names of the US presidents who were assassinated?"
graph = build_graph()
messages = [HumanMessage(content=question)]
config = {"configurable": {"thread_id": "test_thread"}}
result = graph.invoke({"messages": messages}, config)
for m in result["messages"]:
m.pretty_print()
|