josondev's picture
Update veryfinal.py
b1b6e20 verified
raw
history blame
10.9 kB
"""LangGraph Agent with FAISS Vector Store and Custom Tools"""
import os, time, random
from dotenv import load_dotenv
from typing import List, Dict, Any, TypedDict, Annotated
import operator
# LangGraph imports
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langgraph.checkpoint.memory import MemorySaver
# LangChain imports
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain_groq import ChatGroq
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_nvidia_ai_endpoints import ChatNVIDIA
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.vectorstores import FAISS
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
from langchain.tools.retriever import create_retriever_tool
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import JSONLoader
load_dotenv()
# Advanced Rate Limiter (SILENT)
class AdvancedRateLimiter:
def __init__(self, requests_per_minute: int):
self.requests_per_minute = requests_per_minute
self.request_times = []
def wait_if_needed(self):
current_time = time.time()
# Clean old requests (older than 1 minute)
self.request_times = [t for t in self.request_times if current_time - t < 60]
# Check if we need to wait
if len(self.request_times) >= self.requests_per_minute:
wait_time = 60 - (current_time - self.request_times[0]) + random.uniform(2, 8)
time.sleep(wait_time)
# Record this request
self.request_times.append(current_time)
# Initialize rate limiters
groq_limiter = AdvancedRateLimiter(requests_per_minute=30)
gemini_limiter = AdvancedRateLimiter(requests_per_minute=2)
nvidia_limiter = AdvancedRateLimiter(requests_per_minute=5)
# Custom Tools
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers.
Args:
a: first int
b: second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers.
Args:
a: first int
b: second int
"""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract two numbers.
Args:
a: first int
b: second int
"""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide two numbers.
Args:
a: first int
b: second int
"""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers.
Args:
a: first int
b: second int
"""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return maximum 2 results.
Args:
query: The search query."""
try:
time.sleep(random.uniform(1, 3))
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return formatted_search_docs
except Exception as e:
return f"Wikipedia search failed: {str(e)}"
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results.
Args:
query: The search query."""
try:
time.sleep(random.uniform(2, 5))
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.get("url", "")}" />\n{doc.get("content", "")}\n</Document>'
for doc in search_docs
])
return formatted_search_docs
except Exception as e:
return f"Web search failed: {str(e)}"
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query."""
try:
time.sleep(random.uniform(1, 4))
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
])
return formatted_search_docs
except Exception as e:
return f"ArXiv search failed: {str(e)}"
# Load and process JSONL data for FAISS vector store
def setup_faiss_vector_store():
"""Setup FAISS vector database from JSONL metadata"""
try:
jq_schema = """
{
page_content: .Question,
metadata: {
task_id: .task_id,
Level: .Level,
Final_answer: ."Final answer",
file_name: .file_name,
Steps: .["Annotator Metadata"].Steps,
Number_of_steps: .["Annotator Metadata"]["Number of steps"],
How_long: .["Annotator Metadata"]["How long did this take?"],
Tools: .["Annotator Metadata"].Tools,
Number_of_tools: .["Annotator Metadata"]["Number of tools"]
}
}
"""
# Load documents
json_loader = JSONLoader(file_path="metadata.jsonl", jq_schema=jq_schema, json_lines=True, text_content=False)
json_docs = json_loader.load()
# Split documents
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=200)
json_chunks = text_splitter.split_documents(json_docs)
# Create FAISS vector store
embeddings = NVIDIAEmbeddings(
model="nvidia/nv-embedqa-e5-v5",
api_key=os.getenv("NVIDIA_API_KEY")
)
vector_store = FAISS.from_documents(json_chunks, embeddings)
return vector_store
except Exception as e:
print(f"FAISS vector store setup failed: {e}")
return None
# Load system prompt
try:
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
except FileNotFoundError:
system_prompt = """You are a helpful assistant tasked with answering questions using a set of tools.
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
FINAL ANSWER: [YOUR FINAL ANSWER].
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
Your answer should only start with "FINAL ANSWER: ", then follows with the answer."""
# System message
sys_msg = SystemMessage(content=system_prompt)
# Setup FAISS vector store and retriever
vector_store = setup_faiss_vector_store()
if vector_store:
retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 3})
retriever_tool = create_retriever_tool(
retriever=retriever,
name="Question_Search",
description="A tool to retrieve similar questions from a vector store.",
)
else:
retriever_tool = None
# All tools
all_tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
web_search,
arvix_search,
]
if retriever_tool:
all_tools.append(retriever_tool)
# Build graph function
def build_graph(provider: str = "groq"):
"""Build the LangGraph with rate limiting"""
# Initialize LLMs with best free models
if provider == "google":
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash-thinking-exp", temperature=0)
elif provider == "groq":
llm = ChatGroq(model="llama-3.3-70b-versatile", temperature=0)
elif provider == "nvidia":
llm = ChatNVIDIA(model="meta/llama-3.1-70b-instruct", temperature=0)
else:
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'nvidia'.")
# Bind tools to LLM
llm_with_tools = llm.bind_tools(all_tools)
# Node functions
def assistant(state: MessagesState):
"""Assistant node with rate limiting"""
if provider == "groq":
groq_limiter.wait_if_needed()
elif provider == "google":
gemini_limiter.wait_if_needed()
elif provider == "nvidia":
nvidia_limiter.wait_if_needed()
return {"messages": [llm_with_tools.invoke(state["messages"])]}
def retriever_node(state: MessagesState):
"""Retriever node"""
if vector_store and len(state["messages"]) > 0:
try:
similar_questions = vector_store.similarity_search(state["messages"][-1].content, k=1)
if similar_questions:
example_msg = HumanMessage(
content=f"Here I provide a similar question and answer for reference: \n\n{similar_questions[0].page_content}",
)
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
except Exception as e:
print(f"Retriever error: {e}")
return {"messages": [sys_msg] + state["messages"]}
# Build graph
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever_node)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(all_tools))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
# Compile graph with memory
memory = MemorySaver()
return builder.compile(checkpointer=memory)
# Test
if __name__ == "__main__":
question = "What are the names of the US presidents who were assassinated?"
# Build the graph
graph = build_graph(provider="groq")
# Run the graph
messages = [HumanMessage(content=question)]
config = {"configurable": {"thread_id": "test_thread"}}
result = graph.invoke({"messages": messages}, config)
for m in result["messages"]:
m.pretty_print()