|
"""LangGraph Agent with FAISS Vector Store and Custom Tools""" |
|
import os, time, random |
|
from dotenv import load_dotenv |
|
from typing import List, Dict, Any, TypedDict, Annotated |
|
import operator |
|
|
|
|
|
from langgraph.graph import START, StateGraph, MessagesState |
|
from langgraph.prebuilt import tools_condition |
|
from langgraph.prebuilt import ToolNode |
|
from langgraph.checkpoint.memory import MemorySaver |
|
|
|
|
|
from langchain_core.messages import SystemMessage, HumanMessage |
|
from langchain_core.tools import tool |
|
from langchain_groq import ChatGroq |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
from langchain_nvidia_ai_endpoints import ChatNVIDIA |
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader |
|
from langchain_community.vectorstores import FAISS |
|
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings |
|
from langchain.tools.retriever import create_retriever_tool |
|
from langchain_text_splitters import RecursiveCharacterTextSplitter |
|
from langchain_community.document_loaders import JSONLoader |
|
|
|
load_dotenv() |
|
|
|
|
|
class AdvancedRateLimiter: |
|
def __init__(self, requests_per_minute: int): |
|
self.requests_per_minute = requests_per_minute |
|
self.request_times = [] |
|
|
|
def wait_if_needed(self): |
|
current_time = time.time() |
|
|
|
self.request_times = [t for t in self.request_times if current_time - t < 60] |
|
|
|
|
|
if len(self.request_times) >= self.requests_per_minute: |
|
wait_time = 60 - (current_time - self.request_times[0]) + random.uniform(2, 8) |
|
time.sleep(wait_time) |
|
|
|
|
|
self.request_times.append(current_time) |
|
|
|
|
|
groq_limiter = AdvancedRateLimiter(requests_per_minute=30) |
|
gemini_limiter = AdvancedRateLimiter(requests_per_minute=2) |
|
nvidia_limiter = AdvancedRateLimiter(requests_per_minute=5) |
|
|
|
|
|
@tool |
|
def multiply(a: int, b: int) -> int: |
|
"""Multiply two numbers. |
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a * b |
|
|
|
@tool |
|
def add(a: int, b: int) -> int: |
|
"""Add two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a + b |
|
|
|
@tool |
|
def subtract(a: int, b: int) -> int: |
|
"""Subtract two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a - b |
|
|
|
@tool |
|
def divide(a: int, b: int) -> float: |
|
"""Divide two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
if b == 0: |
|
raise ValueError("Cannot divide by zero.") |
|
return a / b |
|
|
|
@tool |
|
def modulus(a: int, b: int) -> int: |
|
"""Get the modulus of two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a % b |
|
|
|
@tool |
|
def wiki_search(query: str) -> str: |
|
"""Search Wikipedia for a query and return maximum 2 results. |
|
|
|
Args: |
|
query: The search query.""" |
|
try: |
|
time.sleep(random.uniform(1, 3)) |
|
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return formatted_search_docs |
|
except Exception as e: |
|
return f"Wikipedia search failed: {str(e)}" |
|
|
|
@tool |
|
def web_search(query: str) -> str: |
|
"""Search Tavily for a query and return maximum 3 results. |
|
|
|
Args: |
|
query: The search query.""" |
|
try: |
|
time.sleep(random.uniform(2, 5)) |
|
search_docs = TavilySearchResults(max_results=3).invoke(query=query) |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.get("url", "")}" />\n{doc.get("content", "")}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return formatted_search_docs |
|
except Exception as e: |
|
return f"Web search failed: {str(e)}" |
|
|
|
@tool |
|
def arvix_search(query: str) -> str: |
|
"""Search Arxiv for a query and return maximum 3 result. |
|
|
|
Args: |
|
query: The search query.""" |
|
try: |
|
time.sleep(random.uniform(1, 4)) |
|
search_docs = ArxivLoader(query=query, load_max_docs=3).load() |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return formatted_search_docs |
|
except Exception as e: |
|
return f"ArXiv search failed: {str(e)}" |
|
|
|
|
|
def setup_faiss_vector_store(): |
|
"""Setup FAISS vector database from JSONL metadata""" |
|
try: |
|
jq_schema = """ |
|
{ |
|
page_content: .Question, |
|
metadata: { |
|
task_id: .task_id, |
|
Level: .Level, |
|
Final_answer: ."Final answer", |
|
file_name: .file_name, |
|
Steps: .["Annotator Metadata"].Steps, |
|
Number_of_steps: .["Annotator Metadata"]["Number of steps"], |
|
How_long: .["Annotator Metadata"]["How long did this take?"], |
|
Tools: .["Annotator Metadata"].Tools, |
|
Number_of_tools: .["Annotator Metadata"]["Number of tools"] |
|
} |
|
} |
|
""" |
|
|
|
|
|
json_loader = JSONLoader(file_path="metadata.jsonl", jq_schema=jq_schema, json_lines=True, text_content=False) |
|
json_docs = json_loader.load() |
|
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=200) |
|
json_chunks = text_splitter.split_documents(json_docs) |
|
|
|
|
|
embeddings = NVIDIAEmbeddings( |
|
model="nvidia/nv-embedqa-e5-v5", |
|
api_key=os.getenv("NVIDIA_API_KEY") |
|
) |
|
vector_store = FAISS.from_documents(json_chunks, embeddings) |
|
|
|
return vector_store |
|
except Exception as e: |
|
print(f"FAISS vector store setup failed: {e}") |
|
return None |
|
|
|
|
|
try: |
|
with open("system_prompt.txt", "r", encoding="utf-8") as f: |
|
system_prompt = f.read() |
|
except FileNotFoundError: |
|
system_prompt = """You are a helpful assistant tasked with answering questions using a set of tools. |
|
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: |
|
FINAL ANSWER: [YOUR FINAL ANSWER]. |
|
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. |
|
Your answer should only start with "FINAL ANSWER: ", then follows with the answer.""" |
|
|
|
|
|
sys_msg = SystemMessage(content=system_prompt) |
|
|
|
|
|
vector_store = setup_faiss_vector_store() |
|
if vector_store: |
|
retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 3}) |
|
retriever_tool = create_retriever_tool( |
|
retriever=retriever, |
|
name="Question_Search", |
|
description="A tool to retrieve similar questions from a vector store.", |
|
) |
|
else: |
|
retriever_tool = None |
|
|
|
|
|
all_tools = [ |
|
multiply, |
|
add, |
|
subtract, |
|
divide, |
|
modulus, |
|
wiki_search, |
|
web_search, |
|
arvix_search, |
|
] |
|
|
|
if retriever_tool: |
|
all_tools.append(retriever_tool) |
|
|
|
|
|
def build_graph(provider: str = "groq"): |
|
"""Build the LangGraph with rate limiting""" |
|
|
|
|
|
if provider == "google": |
|
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash-thinking-exp", temperature=0) |
|
elif provider == "groq": |
|
llm = ChatGroq(model="llama-3.3-70b-versatile", temperature=0) |
|
elif provider == "nvidia": |
|
llm = ChatNVIDIA(model="meta/llama-3.1-70b-instruct", temperature=0) |
|
else: |
|
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'nvidia'.") |
|
|
|
|
|
llm_with_tools = llm.bind_tools(all_tools) |
|
|
|
|
|
def assistant(state: MessagesState): |
|
"""Assistant node with rate limiting""" |
|
if provider == "groq": |
|
groq_limiter.wait_if_needed() |
|
elif provider == "google": |
|
gemini_limiter.wait_if_needed() |
|
elif provider == "nvidia": |
|
nvidia_limiter.wait_if_needed() |
|
|
|
return {"messages": [llm_with_tools.invoke(state["messages"])]} |
|
|
|
def retriever_node(state: MessagesState): |
|
"""Retriever node""" |
|
if vector_store and len(state["messages"]) > 0: |
|
try: |
|
similar_questions = vector_store.similarity_search(state["messages"][-1].content, k=1) |
|
if similar_questions: |
|
example_msg = HumanMessage( |
|
content=f"Here I provide a similar question and answer for reference: \n\n{similar_questions[0].page_content}", |
|
) |
|
return {"messages": [sys_msg] + state["messages"] + [example_msg]} |
|
except Exception as e: |
|
print(f"Retriever error: {e}") |
|
|
|
return {"messages": [sys_msg] + state["messages"]} |
|
|
|
|
|
builder = StateGraph(MessagesState) |
|
builder.add_node("retriever", retriever_node) |
|
builder.add_node("assistant", assistant) |
|
builder.add_node("tools", ToolNode(all_tools)) |
|
builder.add_edge(START, "retriever") |
|
builder.add_edge("retriever", "assistant") |
|
builder.add_conditional_edges("assistant", tools_condition) |
|
builder.add_edge("tools", "assistant") |
|
|
|
|
|
memory = MemorySaver() |
|
return builder.compile(checkpointer=memory) |
|
|
|
|
|
if __name__ == "__main__": |
|
question = "What are the names of the US presidents who were assassinated?" |
|
|
|
graph = build_graph(provider="groq") |
|
|
|
messages = [HumanMessage(content=question)] |
|
config = {"configurable": {"thread_id": "test_thread"}} |
|
result = graph.invoke({"messages": messages}, config) |
|
for m in result["messages"]: |
|
m.pretty_print() |
|
|