|
""" Enhanced LangGraph Agent Evaluation Runner - Final Version""" |
|
import os |
|
import gradio as gr |
|
import requests |
|
import pandas as pd |
|
from langchain_core.messages import HumanMessage |
|
from veryfinal import build_graph |
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
class EnhancedLangGraphAgent: |
|
"""Enhanced LangGraph agent with proper response handling.""" |
|
def __init__(self): |
|
print("Enhanced LangGraph Agent initialized.") |
|
try: |
|
self.graph = build_graph(provider="groq") |
|
print("LangGraph built successfully.") |
|
except Exception as e: |
|
print(f"Error building graph: {e}") |
|
self.graph = None |
|
|
|
def __call__(self, question: str) -> str: |
|
print(f"Processing: {question[:100]}...") |
|
|
|
if self.graph is None: |
|
return "Error: Agent not properly initialized" |
|
|
|
try: |
|
|
|
messages = [HumanMessage(content=question)] |
|
config = {"configurable": {"thread_id": f"eval_{hash(question)}"}} |
|
|
|
|
|
result = self.graph.invoke({"messages": messages}, config) |
|
|
|
|
|
if result and "messages" in result and result["messages"]: |
|
final_message = result["messages"][-1] |
|
if hasattr(final_message, 'content'): |
|
answer = final_message.content |
|
else: |
|
answer = str(final_message) |
|
|
|
|
|
if "FINAL ANSWER:" in answer: |
|
answer = answer.split("FINAL ANSWER:")[-1].strip() |
|
|
|
|
|
if not answer or answer == question or len(answer.strip()) == 0: |
|
return "Information not available" |
|
|
|
return answer.strip() |
|
else: |
|
return "Information not available" |
|
|
|
except Exception as e: |
|
print(f"Error processing question: {e}") |
|
return f"Error: {str(e)}" |
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
"""Fetch questions, run agent, and submit answers.""" |
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username = f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
try: |
|
agent = EnhancedLangGraphAgent() |
|
if agent.graph is None: |
|
return "Error: Failed to initialize agent properly", None |
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "No space ID available" |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except Exception as e: |
|
return f"Error fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running Enhanced LangGraph agent on {len(questions_data)} questions...") |
|
|
|
for i, item in enumerate(questions_data): |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
|
|
if not task_id or question_text is None: |
|
continue |
|
|
|
print(f"Processing question {i+1}/{len(questions_data)}: {task_id}") |
|
|
|
try: |
|
submitted_answer = agent(question_text) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({ |
|
"Task ID": task_id, |
|
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, |
|
"Submitted Answer": submitted_answer[:200] + "..." if len(submitted_answer) > 200 else submitted_answer |
|
}) |
|
except Exception as e: |
|
error_msg = f"AGENT ERROR: {e}" |
|
answers_payload.append({"task_id": task_id, "submitted_answer": error_msg}) |
|
results_log.append({ |
|
"Task ID": task_id, |
|
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, |
|
"Submitted Answer": error_msg |
|
}) |
|
|
|
if not answers_payload: |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
print(f"Submitting {len(answers_payload)} answers...") |
|
|
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
return final_status, pd.DataFrame(results_log) |
|
except Exception as e: |
|
return f"Submission Failed: {e}", pd.DataFrame(results_log) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Enhanced LangGraph Agent - Final Version") |
|
gr.Markdown( |
|
""" |
|
**Features:** |
|
- β
Proper LangGraph structure with tool integration |
|
- β
Multi-LLM support (Groq, Google, HuggingFace) |
|
- β
Enhanced search capabilities (Wikipedia, Tavily, ArXiv) |
|
- β
Mathematical tools for calculations |
|
- β
Vector store integration for similar questions |
|
- β
Proper response formatting and validation |
|
- β
Error handling and fallback mechanisms |
|
|
|
**Tools Available:** |
|
- Mathematical operations (add, subtract, multiply, divide, modulus) |
|
- Wikipedia search for encyclopedic information |
|
- Web search via Tavily for current information |
|
- ArXiv search for academic papers |
|
- Vector similarity search for related questions |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary") |
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " Enhanced LangGraph Agent Starting " + "-"*30) |
|
demo.launch(debug=True, share=False) |
|
|