File size: 7,409 Bytes
2d9c7ce
10e9b7d
 
95555bb
 
87340ea
decae1d
87340ea
38a1a77
95555bb
 
38a1a77
2d9c7ce
 
95555bb
2d9c7ce
38a1a77
 
2d9c7ce
38a1a77
 
 
cd32eb4
95555bb
2d9c7ce
38a1a77
 
 
 
 
2d9c7ce
 
 
 
 
 
38a1a77
2d9c7ce
 
 
 
 
38a1a77
2d9c7ce
 
 
 
 
 
 
 
 
 
 
38a1a77
15b6891
38a1a77
 
2d9c7ce
 
c3f6914
cd32eb4
15b6891
80c837c
38a1a77
95555bb
80c837c
95555bb
7e4a06b
95555bb
 
e80aab9
95555bb
 
 
 
38a1a77
31243f4
2d9c7ce
38a1a77
 
31243f4
95555bb
 
38a1a77
 
95555bb
38a1a77
95555bb
 
 
 
 
 
80c837c
95555bb
80c837c
95555bb
 
2d9c7ce
95555bb
 
2d9c7ce
38a1a77
 
95555bb
 
38a1a77
95555bb
 
38a1a77
 
 
95555bb
 
 
38a1a77
 
 
 
 
95555bb
38a1a77
 
 
 
 
 
 
95555bb
 
 
 
2d9c7ce
95555bb
2d9c7ce
 
95555bb
 
 
 
 
 
 
 
 
 
 
2d9c7ce
95555bb
2d9c7ce
3c4371f
2d9c7ce
e80aab9
2d9c7ce
95555bb
 
2d9c7ce
 
 
 
 
 
 
 
38a1a77
2d9c7ce
 
 
 
 
 
95555bb
e25ef11
95555bb
 
38a1a77
95555bb
 
 
 
 
 
e80aab9
 
 
2d9c7ce
cd32eb4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
""" Enhanced LangGraph Agent Evaluation Runner - Final Version"""
import os
import gradio as gr
import requests
import pandas as pd
from langchain_core.messages import HumanMessage
from veryfinal import build_graph

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Enhanced Agent Definition ---
class EnhancedLangGraphAgent:
    """Enhanced LangGraph agent with proper response handling."""
    def __init__(self):
        print("Enhanced LangGraph Agent initialized.")
        try:
            self.graph = build_graph(provider="groq")
            print("LangGraph built successfully.")
        except Exception as e:
            print(f"Error building graph: {e}")
            self.graph = None

    def __call__(self, question: str) -> str:
        print(f"Processing: {question[:100]}...")
        
        if self.graph is None:
            return "Error: Agent not properly initialized"
        
        try:
            # Create messages and config
            messages = [HumanMessage(content=question)]
            config = {"configurable": {"thread_id": f"eval_{hash(question)}"}}
            
            # Invoke the graph
            result = self.graph.invoke({"messages": messages}, config)
            
            # Extract the final answer
            if result and "messages" in result and result["messages"]:
                final_message = result["messages"][-1]
                if hasattr(final_message, 'content'):
                    answer = final_message.content
                else:
                    answer = str(final_message)
                
                # Clean up the answer
                if "FINAL ANSWER:" in answer:
                    answer = answer.split("FINAL ANSWER:")[-1].strip()
                
                # Validate the answer
                if not answer or answer == question or len(answer.strip()) == 0:
                    return "Information not available"
                
                return answer.strip()
            else:
                return "Information not available"
                
        except Exception as e:
            print(f"Error processing question: {e}")
            return f"Error: {str(e)}"

def run_and_submit_all(profile: gr.OAuthProfile | None):
    """Fetch questions, run agent, and submit answers."""
    space_id = os.getenv("SPACE_ID")
    
    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent
    try:
        agent = EnhancedLangGraphAgent()
        if agent.graph is None:
            return "Error: Failed to initialize agent properly", None
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "No space ID available"

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except Exception as e:
        return f"Error fetching questions: {e}", None

    # 3. Run Agent
    results_log = []
    answers_payload = []
    print(f"Running Enhanced LangGraph agent on {len(questions_data)} questions...")
    
    for i, item in enumerate(questions_data):
        task_id = item.get("task_id")
        question_text = item.get("question")
        
        if not task_id or question_text is None:
            continue
            
        print(f"Processing question {i+1}/{len(questions_data)}: {task_id}")
        
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({
                "Task ID": task_id, 
                "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, 
                "Submitted Answer": submitted_answer[:200] + "..." if len(submitted_answer) > 200 else submitted_answer
            })
        except Exception as e:
            error_msg = f"AGENT ERROR: {e}"
            answers_payload.append({"task_id": task_id, "submitted_answer": error_msg})
            results_log.append({
                "Task ID": task_id, 
                "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, 
                "Submitted Answer": error_msg
            })

    if not answers_payload:
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Submit
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    print(f"Submitting {len(answers_payload)} answers...")
    
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        return final_status, pd.DataFrame(results_log)
    except Exception as e:
        return f"Submission Failed: {e}", pd.DataFrame(results_log)

# --- Gradio Interface ---
with gr.Blocks() as demo:
    gr.Markdown("# Enhanced LangGraph Agent - Final Version")
    gr.Markdown(
        """
        **Features:**
        - βœ… Proper LangGraph structure with tool integration
        - βœ… Multi-LLM support (Groq, Google, HuggingFace)
        - βœ… Enhanced search capabilities (Wikipedia, Tavily, ArXiv)
        - βœ… Mathematical tools for calculations
        - βœ… Vector store integration for similar questions
        - βœ… Proper response formatting and validation
        - βœ… Error handling and fallback mechanisms
        
        **Tools Available:**
        - Mathematical operations (add, subtract, multiply, divide, modulus)
        - Wikipedia search for encyclopedic information
        - Web search via Tavily for current information
        - ArXiv search for academic papers
        - Vector similarity search for related questions
        """
    )

    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " Enhanced LangGraph Agent Starting " + "-"*30)
    demo.launch(debug=True, share=False)