josondev's picture
Update app.py
2d9c7ce verified
raw
history blame
7.41 kB
""" Enhanced LangGraph Agent Evaluation Runner - Final Version"""
import os
import gradio as gr
import requests
import pandas as pd
from langchain_core.messages import HumanMessage
from veryfinal import build_graph
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Enhanced Agent Definition ---
class EnhancedLangGraphAgent:
"""Enhanced LangGraph agent with proper response handling."""
def __init__(self):
print("Enhanced LangGraph Agent initialized.")
try:
self.graph = build_graph(provider="groq")
print("LangGraph built successfully.")
except Exception as e:
print(f"Error building graph: {e}")
self.graph = None
def __call__(self, question: str) -> str:
print(f"Processing: {question[:100]}...")
if self.graph is None:
return "Error: Agent not properly initialized"
try:
# Create messages and config
messages = [HumanMessage(content=question)]
config = {"configurable": {"thread_id": f"eval_{hash(question)}"}}
# Invoke the graph
result = self.graph.invoke({"messages": messages}, config)
# Extract the final answer
if result and "messages" in result and result["messages"]:
final_message = result["messages"][-1]
if hasattr(final_message, 'content'):
answer = final_message.content
else:
answer = str(final_message)
# Clean up the answer
if "FINAL ANSWER:" in answer:
answer = answer.split("FINAL ANSWER:")[-1].strip()
# Validate the answer
if not answer or answer == question or len(answer.strip()) == 0:
return "Information not available"
return answer.strip()
else:
return "Information not available"
except Exception as e:
print(f"Error processing question: {e}")
return f"Error: {str(e)}"
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""Fetch questions, run agent, and submit answers."""
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = EnhancedLangGraphAgent()
if agent.graph is None:
return "Error: Failed to initialize agent properly", None
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "No space ID available"
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
return f"Error fetching questions: {e}", None
# 3. Run Agent
results_log = []
answers_payload = []
print(f"Running Enhanced LangGraph agent on {len(questions_data)} questions...")
for i, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
print(f"Processing question {i+1}/{len(questions_data)}: {task_id}")
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": submitted_answer[:200] + "..." if len(submitted_answer) > 200 else submitted_answer
})
except Exception as e:
error_msg = f"AGENT ERROR: {e}"
answers_payload.append({"task_id": task_id, "submitted_answer": error_msg})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": error_msg
})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Submit
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
print(f"Submitting {len(answers_payload)} answers...")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
return final_status, pd.DataFrame(results_log)
except Exception as e:
return f"Submission Failed: {e}", pd.DataFrame(results_log)
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# Enhanced LangGraph Agent - Final Version")
gr.Markdown(
"""
**Features:**
- βœ… Proper LangGraph structure with tool integration
- βœ… Multi-LLM support (Groq, Google, HuggingFace)
- βœ… Enhanced search capabilities (Wikipedia, Tavily, ArXiv)
- βœ… Mathematical tools for calculations
- βœ… Vector store integration for similar questions
- βœ… Proper response formatting and validation
- βœ… Error handling and fallback mechanisms
**Tools Available:**
- Mathematical operations (add, subtract, multiply, divide, modulus)
- Wikipedia search for encyclopedic information
- Web search via Tavily for current information
- ArXiv search for academic papers
- Vector similarity search for related questions
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " Enhanced LangGraph Agent Starting " + "-"*30)
demo.launch(debug=True, share=False)