File size: 7,409 Bytes
2d9c7ce 10e9b7d 95555bb 87340ea decae1d 87340ea 38a1a77 95555bb 38a1a77 2d9c7ce 95555bb 2d9c7ce 38a1a77 2d9c7ce 38a1a77 cd32eb4 95555bb 2d9c7ce 38a1a77 2d9c7ce 38a1a77 2d9c7ce 38a1a77 2d9c7ce 38a1a77 15b6891 38a1a77 2d9c7ce c3f6914 cd32eb4 15b6891 80c837c 38a1a77 95555bb 80c837c 95555bb 7e4a06b 95555bb e80aab9 95555bb 38a1a77 31243f4 2d9c7ce 38a1a77 31243f4 95555bb 38a1a77 95555bb 38a1a77 95555bb 80c837c 95555bb 80c837c 95555bb 2d9c7ce 95555bb 2d9c7ce 38a1a77 95555bb 38a1a77 95555bb 38a1a77 95555bb 38a1a77 95555bb 38a1a77 95555bb 2d9c7ce 95555bb 2d9c7ce 95555bb 2d9c7ce 95555bb 2d9c7ce 3c4371f 2d9c7ce e80aab9 2d9c7ce 95555bb 2d9c7ce 38a1a77 2d9c7ce 95555bb e25ef11 95555bb 38a1a77 95555bb e80aab9 2d9c7ce cd32eb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
""" Enhanced LangGraph Agent Evaluation Runner - Final Version"""
import os
import gradio as gr
import requests
import pandas as pd
from langchain_core.messages import HumanMessage
from veryfinal import build_graph
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Enhanced Agent Definition ---
class EnhancedLangGraphAgent:
"""Enhanced LangGraph agent with proper response handling."""
def __init__(self):
print("Enhanced LangGraph Agent initialized.")
try:
self.graph = build_graph(provider="groq")
print("LangGraph built successfully.")
except Exception as e:
print(f"Error building graph: {e}")
self.graph = None
def __call__(self, question: str) -> str:
print(f"Processing: {question[:100]}...")
if self.graph is None:
return "Error: Agent not properly initialized"
try:
# Create messages and config
messages = [HumanMessage(content=question)]
config = {"configurable": {"thread_id": f"eval_{hash(question)}"}}
# Invoke the graph
result = self.graph.invoke({"messages": messages}, config)
# Extract the final answer
if result and "messages" in result and result["messages"]:
final_message = result["messages"][-1]
if hasattr(final_message, 'content'):
answer = final_message.content
else:
answer = str(final_message)
# Clean up the answer
if "FINAL ANSWER:" in answer:
answer = answer.split("FINAL ANSWER:")[-1].strip()
# Validate the answer
if not answer or answer == question or len(answer.strip()) == 0:
return "Information not available"
return answer.strip()
else:
return "Information not available"
except Exception as e:
print(f"Error processing question: {e}")
return f"Error: {str(e)}"
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""Fetch questions, run agent, and submit answers."""
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = EnhancedLangGraphAgent()
if agent.graph is None:
return "Error: Failed to initialize agent properly", None
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "No space ID available"
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
return f"Error fetching questions: {e}", None
# 3. Run Agent
results_log = []
answers_payload = []
print(f"Running Enhanced LangGraph agent on {len(questions_data)} questions...")
for i, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
print(f"Processing question {i+1}/{len(questions_data)}: {task_id}")
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": submitted_answer[:200] + "..." if len(submitted_answer) > 200 else submitted_answer
})
except Exception as e:
error_msg = f"AGENT ERROR: {e}"
answers_payload.append({"task_id": task_id, "submitted_answer": error_msg})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": error_msg
})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Submit
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
print(f"Submitting {len(answers_payload)} answers...")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
return final_status, pd.DataFrame(results_log)
except Exception as e:
return f"Submission Failed: {e}", pd.DataFrame(results_log)
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# Enhanced LangGraph Agent - Final Version")
gr.Markdown(
"""
**Features:**
- β
Proper LangGraph structure with tool integration
- β
Multi-LLM support (Groq, Google, HuggingFace)
- β
Enhanced search capabilities (Wikipedia, Tavily, ArXiv)
- β
Mathematical tools for calculations
- β
Vector store integration for similar questions
- β
Proper response formatting and validation
- β
Error handling and fallback mechanisms
**Tools Available:**
- Mathematical operations (add, subtract, multiply, divide, modulus)
- Wikipedia search for encyclopedic information
- Web search via Tavily for current information
- ArXiv search for academic papers
- Vector similarity search for related questions
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " Enhanced LangGraph Agent Starting " + "-"*30)
demo.launch(debug=True, share=False)
|