josondev's picture
Update app.py
4dcc8e2 verified
""" Enhanced Multi-LLM Agent Evaluation Runner with Vector Database Integration"""
import os
import gradio as gr
import requests
import pandas as pd
from langchain_core.messages import HumanMessage
from veryfinal import build_graph, HybridLangGraphMultiLLMSystem
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Enhanced Agent Definition ---
class EnhancedMultiLLMAgent:
"""A multi-provider LangGraph agent with vector database integration."""
def __init__(self):
print("Enhanced Multi-LLM Agent with Vector Database initialized.")
try:
self.system = HybridLangGraphMultiLLMSystem(provider="groq")
self.graph = self.system.graph
# Load metadata if available
if os.path.exists("metadata.jsonl"):
print("Loading question metadata...")
count = self.system.load_metadata_from_jsonl("metadata.jsonl")
print(f"Loaded {count} questions into vector database")
print("Enhanced Multi-LLM Graph built successfully.")
except Exception as e:
print(f"Error building graph: {e}")
self.graph = None
self.system = None
def __call__(self, question: str) -> str:
print(f"Agent received question: {question[:100]}...")
if self.graph is None or self.system is None:
return "Error: Agent not properly initialized"
try:
# Use the enhanced system's process_query method
answer = self.system.process_query(question)
# Additional validation
if not answer or answer == question or len(answer.strip()) == 0:
return "Information not available"
return answer.strip()
except Exception as e:
error_msg = f"Error: {str(e)}"
print(error_msg)
return error_msg
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""Fetch questions, run enhanced agent, and submit answers."""
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = EnhancedMultiLLMAgent()
if agent.graph is None:
return "Error: Failed to initialize agent properly", None
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "No space ID available"
print(f"Agent code URL: {agent_code}")
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
# 3. Run Enhanced Agent
results_log = []
answers_payload = []
print(f"Running Enhanced Multi-LLM agent with vector database on {len(questions_data)} questions...")
for i, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
print(f"Processing question {i+1}/{len(questions_data)}: {task_id}")
try:
submitted_answer = agent(question_text)
# Additional validation to prevent question repetition
if submitted_answer == question_text or submitted_answer.startswith(question_text):
submitted_answer = "Information not available"
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": submitted_answer[:200] + "..." if len(submitted_answer) > 200 else submitted_answer
})
except Exception as e:
error_msg = f"AGENT ERROR: {e}"
print(f"Error running agent on task {task_id}: {e}")
answers_payload.append({"task_id": task_id, "submitted_answer": error_msg})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": error_msg
})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Enhanced Multi-LLM Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
status_message = f"Submission Failed: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# Enhanced Multi-LLM Agent with Vector Database Integration")
gr.Markdown(
"""
**Instructions:**
1. Log in to your Hugging Face account using the button below.
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
**Enhanced Agent Features:**
- **Multi-LLM Support**: Groq (Llama-3 8B/70B, DeepSeek)
- **Vector Database Integration**: FAISS + Supabase for similar question retrieval
- **Intelligent Routing**: Automatically selects best provider based on query complexity
- **Enhanced Tools**: Mathematical operations, web search, Wikipedia integration
- **Question-Answering**: Optimized for evaluation tasks with proper formatting
- **Similar Questions Context**: Uses vector similarity to provide relevant context
- **Error Handling**: Robust fallback mechanisms and comprehensive logging
**Routing Examples:**
- Math: "What is 25 multiplied by 17?" → Llama-3 70B
- Search: "Find information about Mercedes Sosa" → Search-Enhanced
- Complex: "Analyze quantum computing principles" → DeepSeek
- Simple: "What is the capital of France?" → Llama-3 8B
**Vector Database Features:**
- Automatic loading of metadata.jsonl if present
- Similar question retrieval for enhanced context
- Supabase integration for persistent storage
- FAISS for fast vector similarity search
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " Enhanced Multi-LLM Agent with Vector DB Starting " + "-"*30)
demo.launch(debug=True, share=False)