Spaces:
Runtime error
Runtime error
""" Enhanced Multi-LLM Agent Evaluation Runner with Vector Database Integration""" | |
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from langchain_core.messages import HumanMessage | |
from veryfinal import build_graph, HybridLangGraphMultiLLMSystem | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- Enhanced Agent Definition --- | |
class EnhancedMultiLLMAgent: | |
"""A multi-provider LangGraph agent with vector database integration.""" | |
def __init__(self): | |
print("Enhanced Multi-LLM Agent with Vector Database initialized.") | |
try: | |
self.system = HybridLangGraphMultiLLMSystem(provider="groq") | |
self.graph = self.system.graph | |
# Load metadata if available | |
if os.path.exists("metadata.jsonl"): | |
print("Loading question metadata...") | |
count = self.system.load_metadata_from_jsonl("metadata.jsonl") | |
print(f"Loaded {count} questions into vector database") | |
print("Enhanced Multi-LLM Graph built successfully.") | |
except Exception as e: | |
print(f"Error building graph: {e}") | |
self.graph = None | |
self.system = None | |
def __call__(self, question: str) -> str: | |
print(f"Agent received question: {question[:100]}...") | |
if self.graph is None or self.system is None: | |
return "Error: Agent not properly initialized" | |
try: | |
# Use the enhanced system's process_query method | |
answer = self.system.process_query(question) | |
# Additional validation | |
if not answer or answer == question or len(answer.strip()) == 0: | |
return "Information not available" | |
return answer.strip() | |
except Exception as e: | |
error_msg = f"Error: {str(e)}" | |
print(error_msg) | |
return error_msg | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
"""Fetch questions, run enhanced agent, and submit answers.""" | |
space_id = os.getenv("SPACE_ID") | |
if profile: | |
username = f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent | |
try: | |
agent = EnhancedMultiLLMAgent() | |
if agent.graph is None: | |
return "Error: Failed to initialize agent properly", None | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "No space ID available" | |
print(f"Agent code URL: {agent_code}") | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except Exception as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
# 3. Run Enhanced Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running Enhanced Multi-LLM agent with vector database on {len(questions_data)} questions...") | |
for i, item in enumerate(questions_data): | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
print(f"Processing question {i+1}/{len(questions_data)}: {task_id}") | |
try: | |
submitted_answer = agent(question_text) | |
# Additional validation to prevent question repetition | |
if submitted_answer == question_text or submitted_answer.startswith(question_text): | |
submitted_answer = "Information not available" | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, | |
"Submitted Answer": submitted_answer[:200] + "..." if len(submitted_answer) > 200 else submitted_answer | |
}) | |
except Exception as e: | |
error_msg = f"AGENT ERROR: {e}" | |
print(f"Error running agent on task {task_id}: {e}") | |
answers_payload.append({"task_id": task_id, "submitted_answer": error_msg}) | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, | |
"Submitted Answer": error_msg | |
}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Enhanced Multi-LLM Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except Exception as e: | |
status_message = f"Submission Failed: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Enhanced Multi-LLM Agent with Vector Database Integration") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Log in to your Hugging Face account using the button below. | |
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
**Enhanced Agent Features:** | |
- **Multi-LLM Support**: Groq (Llama-3 8B/70B, DeepSeek) | |
- **Vector Database Integration**: FAISS + Supabase for similar question retrieval | |
- **Intelligent Routing**: Automatically selects best provider based on query complexity | |
- **Enhanced Tools**: Mathematical operations, web search, Wikipedia integration | |
- **Question-Answering**: Optimized for evaluation tasks with proper formatting | |
- **Similar Questions Context**: Uses vector similarity to provide relevant context | |
- **Error Handling**: Robust fallback mechanisms and comprehensive logging | |
**Routing Examples:** | |
- Math: "What is 25 multiplied by 17?" → Llama-3 70B | |
- Search: "Find information about Mercedes Sosa" → Search-Enhanced | |
- Complex: "Analyze quantum computing principles" → DeepSeek | |
- Simple: "What is the capital of France?" → Llama-3 8B | |
**Vector Database Features:** | |
- Automatic loading of metadata.jsonl if present | |
- Similar question retrieval for enhanced context | |
- Supabase integration for persistent storage | |
- FAISS for fast vector similarity search | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " Enhanced Multi-LLM Agent with Vector DB Starting " + "-"*30) | |
demo.launch(debug=True, share=False) | |