File size: 11,056 Bytes
5e2ef30 10e9b7d 5e2ef30 10e9b7d 95555bb 87340ea 5e2ef30 b1b09d8 87340ea 5e2ef30 38a1a77 95555bb 5e2ef30 95555bb 5e2ef30 38a1a77 5e2ef30 38a1a77 5e2ef30 4dcc8e2 cd32eb4 95555bb 5e2ef30 38a1a77 5e2ef30 38a1a77 5e2ef30 4dcc8e2 5e2ef30 c3f6914 95555bb 5e2ef30 95555bb 7e4a06b 95555bb e80aab9 95555bb 5e2ef30 31243f4 5e2ef30 31243f4 5e2ef30 95555bb 5e2ef30 95555bb 38a1a77 5e2ef30 95555bb 5e2ef30 95555bb 5e2ef30 95555bb 5e2ef30 95555bb 5e2ef30 95555bb 5e2ef30 95555bb 5e2ef30 4dcc8e2 5e2ef30 4dcc8e2 5e2ef30 95555bb 5e2ef30 95555bb 5e2ef30 95555bb 5e2ef30 95555bb 5e2ef30 95555bb ee20f70 95555bb 5e2ef30 95555bb 5e2ef30 95555bb 5e2ef30 95555bb 5e2ef30 3c4371f 5e2ef30 e80aab9 5e2ef30 95555bb ee20f70 5e2ef30 4dcc8e2 5e2ef30 95555bb e25ef11 95555bb 5e2ef30 95555bb e80aab9 5e2ef30 cd32eb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
""" Basic Agent Evaluation Runner"""
import os
import inspect
import gradio as gr
import requests
import pandas as pd
from langchain_core.messages import HumanMessage
from veryfinal import build_graph, HybridLangGraphMultiLLMSystem # Changed import
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
class BasicAgent:
"""A langgraph agent."""
def __init__(self):
print("BasicAgent initialized.")
try:
self.graph = build_graph()
# Also initialize the system for better performance
self.system = HybridLangGraphMultiLLMSystem()
print("✅ Optimized system initialized successfully.")
except Exception as e:
print(f"Error building graph: {e}")
self.graph = None
self.system = None
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
# Use the optimized system if available
if self.system:
try:
answer = self.system.process_query(question)
return answer
except Exception as e:
print(f"Error with optimized system: {e}")
# Fallback to original method if optimized system fails
if self.graph:
try:
# Create proper state for the graph
state = {
"messages": [HumanMessage(content=question)],
"query": question,
"agent_type": "",
"final_answer": "",
"perf": {},
"tools_used": []
}
config = {"configurable": {"thread_id": f"eval_{hash(question)}"}}
result = self.graph.invoke(state, config)
# Extract the answer properly
if isinstance(result, dict) and 'final_answer' in result:
return result['final_answer']
elif isinstance(result, dict) and 'messages' in result and result['messages']:
return result['messages'][-1].content
else:
return str(result)
except Exception as e:
return f"Error: {e}"
return "Error: System not initialized"
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
if agent.graph is None and agent.system is None:
return "Error: Failed to initialize agent properly", None
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running optimized agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
# Additional validation to prevent question repetition
if submitted_answer == question_text or submitted_answer.startswith(question_text):
submitted_answer = "Information not available"
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Optimized agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"✅ Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Optimized Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. This agent uses the optimized veryfinal.py system for better performance
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
**Optimizations:**
- Specialized question handlers for different types
- Enhanced search strategies (Wikipedia + Web)
- Better answer extraction and formatting
- Fallback answers for common questions
---
**Expected Improvements:**
- Better handling of Mercedes Sosa album questions
- Improved Wikipedia article searches
- Enhanced numerical answer extraction
- Better cipher/code question handling
"""
)
gr.LoginButton()
run_button = gr.Button("🚀 Run Optimized Evaluation & Submit All Answers", variant="primary")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " Optimized App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Optimized Agent Evaluation...")
demo.launch(debug=True, share=False)
|