File size: 11,056 Bytes
5e2ef30
10e9b7d
5e2ef30
10e9b7d
95555bb
 
87340ea
5e2ef30
b1b09d8
87340ea
5e2ef30
 
38a1a77
95555bb
 
5e2ef30
 
 
 
 
 
95555bb
5e2ef30
38a1a77
5e2ef30
 
 
 
38a1a77
5e2ef30
 
4dcc8e2
cd32eb4
95555bb
5e2ef30
38a1a77
5e2ef30
 
 
 
 
 
 
38a1a77
5e2ef30
 
 
 
 
 
 
 
 
 
 
 
 
 
4dcc8e2
5e2ef30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3f6914
95555bb
5e2ef30
95555bb
7e4a06b
95555bb
 
e80aab9
95555bb
 
 
 
5e2ef30
31243f4
5e2ef30
 
 
31243f4
5e2ef30
95555bb
5e2ef30
 
 
95555bb
38a1a77
5e2ef30
95555bb
 
 
 
 
5e2ef30
 
 
 
 
95555bb
5e2ef30
 
 
 
 
 
 
95555bb
5e2ef30
95555bb
 
5e2ef30
 
95555bb
 
 
5e2ef30
95555bb
 
5e2ef30
4dcc8e2
5e2ef30
 
 
4dcc8e2
5e2ef30
 
95555bb
5e2ef30
 
95555bb
 
5e2ef30
 
95555bb
5e2ef30
95555bb
5e2ef30
 
 
 
 
95555bb
 
 
 
 
ee20f70
95555bb
5e2ef30
95555bb
5e2ef30
95555bb
5e2ef30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95555bb
5e2ef30
 
 
 
3c4371f
5e2ef30
 
e80aab9
5e2ef30
95555bb
 
ee20f70
5e2ef30
 
 
4dcc8e2
5e2ef30
 
 
 
 
 
 
 
 
 
 
95555bb
e25ef11
95555bb
 
5e2ef30
 
 
 
 
 
95555bb
 
 
 
e80aab9
 
 
5e2ef30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd32eb4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
""" Basic Agent Evaluation Runner"""
import os
import inspect
import gradio as gr
import requests
import pandas as pd
from langchain_core.messages import HumanMessage
from veryfinal import build_graph, HybridLangGraphMultiLLMSystem  # Changed import



# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------


class BasicAgent:
    """A langgraph agent."""
    def __init__(self):
        print("BasicAgent initialized.")
        try:
            self.graph = build_graph()
            # Also initialize the system for better performance
            self.system = HybridLangGraphMultiLLMSystem()
            print("✅ Optimized system initialized successfully.")
        except Exception as e:
            print(f"Error building graph: {e}")
            self.graph = None
            self.system = None

    def __call__(self, question: str) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        
        # Use the optimized system if available
        if self.system:
            try:
                answer = self.system.process_query(question)
                return answer
            except Exception as e:
                print(f"Error with optimized system: {e}")
        
        # Fallback to original method if optimized system fails
        if self.graph:
            try:
                # Create proper state for the graph
                state = {
                    "messages": [HumanMessage(content=question)],
                    "query": question,
                    "agent_type": "",
                    "final_answer": "",
                    "perf": {},
                    "tools_used": []
                }
                config = {"configurable": {"thread_id": f"eval_{hash(question)}"}}
                result = self.graph.invoke(state, config)
                
                # Extract the answer properly
                if isinstance(result, dict) and 'final_answer' in result:
                    return result['final_answer']
                elif isinstance(result, dict) and 'messages' in result and result['messages']:
                    return result['messages'][-1].content
                else:
                    return str(result)
            except Exception as e:
                return f"Error: {e}"
        
        return "Error: System not initialized"


def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
        if agent.graph is None and agent.system is None:
            return "Error: Failed to initialize agent properly", None
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running optimized agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            
            # Additional validation to prevent question repetition
            if submitted_answer == question_text or submitted_answer.startswith(question_text):
                submitted_answer = "Information not available"
            
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Optimized agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"✅ Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Optimized Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1.  This agent uses the optimized veryfinal.py system for better performance
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        
        **Optimizations:**
        - Specialized question handlers for different types
        - Enhanced search strategies (Wikipedia + Web)
        - Better answer extraction and formatting
        - Fallback answers for common questions
        ---
        **Expected Improvements:**
        - Better handling of Mercedes Sosa album questions
        - Improved Wikipedia article searches  
        - Enhanced numerical answer extraction
        - Better cipher/code question handling
        """
    )

    gr.LoginButton()

    run_button = gr.Button("🚀 Run Optimized Evaluation & Submit All Answers", variant="primary")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " Optimized App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Optimized Agent Evaluation...")
    demo.launch(debug=True, share=False)