File size: 12,927 Bytes
4b4bf72
 
3f0f6de
4b4bf72
b3d1640
6bd6b44
3f0f6de
b2576ed
4b4bf72
b2576ed
 
 
 
 
 
4b4bf72
b2576ed
 
 
b88eade
 
b2576ed
 
b88eade
 
 
 
 
 
 
 
4ec5d16
b88eade
 
 
79bbe0b
b88eade
 
79bbe0b
b88eade
 
 
 
 
 
 
 
 
 
79bbe0b
b88eade
 
79bbe0b
b88eade
79bbe0b
00bf9b7
 
b88eade
00bf9b7
79bbe0b
b88eade
00bf9b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0156b72
b88eade
 
00bf9b7
 
 
 
 
 
 
 
 
 
 
 
 
 
0156b72
b88eade
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0156b72
b88eade
 
79bbe0b
 
 
b88eade
 
00bf9b7
b88eade
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79bbe0b
4ec5d16
b2576ed
4ec5d16
 
 
 
6bd6b44
4ec5d16
b88eade
4ec5d16
 
 
 
 
 
 
 
b2576ed
b88eade
 
 
 
 
 
 
4ec5d16
 
 
 
 
 
 
 
 
b2576ed
 
 
4ec5d16
b88eade
4ec5d16
b88eade
4ec5d16
b88eade
 
 
4ec5d16
 
6bd6b44
3f0f6de
 
b2576ed
 
 
3f0f6de
4ec5d16
6bd6b44
b88eade
 
 
 
 
 
 
 
 
0156b72
b88eade
 
 
 
 
 
4ec5d16
6bd6b44
b2576ed
6bd6b44
 
0156b72
4ec5d16
 
6bd6b44
 
 
 
 
 
 
b2576ed
b88eade
6bd6b44
 
 
3f0f6de
 
 
b88eade
 
 
 
 
 
 
 
b2576ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b88eade
b2576ed
 
 
 
 
 
 
 
 
 
00bf9b7
 
b2576ed
b88eade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import streamlit as st
import pandas as pd
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification, pipeline
from bertopic import BERTopic
import torch
import numpy as np
from collections import Counter
import os

# Configure page
st.set_page_config(
    page_title="Arabic Poem Analysis",
    page_icon="๐Ÿ“š",
    layout="wide"
)

@st.cache_resource
def load_models():
    """Load and cache the models to prevent reloading"""
    # Use CAMeL-Lab's tokenizer for consistency with the emotion model
    tokenizer = AutoTokenizer.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment")
    bert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv2")
    emotion_model = AutoModelForSequenceClassification.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment")
    emotion_tokenizer = AutoTokenizer.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment")
    emotion_classifier = pipeline(
        "sentiment-analysis",
        model=emotion_model,
        tokenizer=emotion_tokenizer,
        return_all_scores=True
    )
    return tokenizer, bert_model, emotion_classifier

def split_text(text, max_length=512):
    """Split text into chunks of maximum token length while preserving word boundaries."""
    words = text.split()
    chunks = []
    current_chunk = []
    current_length = 0
    
    for word in words:
        word_length = len(word.split())
        if current_length + word_length > max_length:
            if current_chunk:  # Only append if there are words in the current chunk
                chunks.append(' '.join(current_chunk))
            current_chunk = [word]
            current_length = word_length
        else:
            current_chunk.append(word)
            current_length += word_length
    
    if current_chunk:  # Append the last chunk if it exists
        chunks.append(' '.join(current_chunk))
    
    return chunks

# The beginning of the code remains the same until the classify_emotion function

def classify_emotion(text, classifier):
    """Classify emotion for complete text with proper token handling."""
    try:
        # Split text into manageable chunks
        words = text.split()
        chunks = []
        current_chunk = []
        current_length = 0
        
        # Create chunks that respect the 512 token limit
        for word in words:
            # Add word length plus 1 for space
            word_tokens = len(classifier.tokenizer.encode(word))
            if current_length + word_tokens > 512:
                if current_chunk:
                    chunks.append(' '.join(current_chunk))
                current_chunk = [word]
                current_length = word_tokens
            else:
                current_chunk.append(word)
                current_length += word_tokens
        
        if current_chunk:
            chunks.append(' '.join(current_chunk))
        
        # If no chunks were created, use the original text with truncation
        if not chunks:
            chunks = [text]
        
        all_scores = []
        for chunk in chunks:
            try:
                # Ensure proper truncation
                inputs = classifier.tokenizer(
                    chunk,
                    truncation=True,
                    max_length=512,
                    return_tensors="pt"
                )
                result = classifier(chunk, truncation=True, max_length=512)
                scores = result[0]
                all_scores.append(scores)
            except Exception as chunk_error:
                st.warning(f"Skipping chunk due to error: {str(chunk_error)}")
                continue
        
        # Average scores across all chunks
        if all_scores:
            # Create a dictionary to store summed scores for each label
            label_scores = {}
            count = len(all_scores)
            
            # Sum up scores for each label
            for scores in all_scores:
                for score in scores:
                    label = score['label']
                    if label not in label_scores:
                        label_scores[label] = 0
                    label_scores[label] += score['score']
            
            # Calculate averages
            avg_scores = {label: score/count for label, score in label_scores.items()}
            
            # Get the label with highest average score
            final_emotion = max(avg_scores.items(), key=lambda x: x[1])[0]
            return final_emotion
        
        return "LABEL_2"  # Default to neutral if no valid results
        
    except Exception as e:
        st.warning(f"Error in emotion classification: {str(e)}")
        return "LABEL_2"  # Default to neutral


def get_embedding_for_text(text, tokenizer, model):
    """Get embedding for complete text."""
    chunks = split_text(text)
    chunk_embeddings = []
    
    for chunk in chunks:
        try:
            inputs = tokenizer(
                chunk,
                return_tensors="pt",
                padding=True,
                truncation=True,
                max_length=512
            )
            inputs = {k: v.to(model.device) for k, v in inputs.items()}
            
            with torch.no_grad():
                outputs = model(**inputs)
            
            embedding = outputs.last_hidden_state[:, 0, :].cpu().numpy()
            chunk_embeddings.append(embedding[0])
        except Exception as e:
            st.warning(f"Error processing chunk: {str(e)}")
            continue
    
    if chunk_embeddings:
        # Use weighted average based on chunk length
        weights = np.array([len(chunk.split()) for chunk in chunks])
        weights = weights / weights.sum()
        weighted_embedding = np.average(chunk_embeddings, axis=0, weights=weights)
        return weighted_embedding
    return np.zeros(model.config.hidden_size)

def format_topics(topic_model, topic_counts):
    """Format topics for display."""
    formatted_topics = []
    for topic_num, count in topic_counts:
        if topic_num == -1:
            topic_label = "Miscellaneous"
        else:
            words = topic_model.get_topic(topic_num)
            topic_label = " | ".join([word for word, _ in words[:5]])  # Show top 5 words per topic
        
        formatted_topics.append({
            'topic': topic_label,
            'count': count
        })
    return formatted_topics

def format_emotions(emotion_counts):
    """Format emotions for display."""
    # Define emotion labels mapping
    EMOTION_LABELS = {
        'LABEL_0': 'Negative',
        'LABEL_1': 'Positive',
        'LABEL_2': 'Neutral'
    }
    
    formatted_emotions = []
    for label, count in emotion_counts:
        emotion = EMOTION_LABELS.get(label, label)
        formatted_emotions.append({
            'emotion': emotion,
            'count': count
        })
    return formatted_emotions

def process_and_summarize(df, top_n=50):
    """Process the data and generate summaries."""
    summaries = []
    
    # Initialize BERTopic with Arabic-specific settings
    topic_model = BERTopic(
        language="multilingual",
        calculate_probabilities=True,
        min_topic_size=2,  # Allow smaller topic groups
        n_gram_range=(1, 3),  # Include up to trigrams
        top_n_words=15,  # Show more words per topic
        verbose=True
    )
    
    # Group by country
    for country, group in df.groupby('country'):
        progress_text = f"Processing poems for {country}..."
        progress_bar = st.progress(0, text=progress_text)
        
        texts = group['poem'].dropna().tolist()
        all_emotions = []
        
        # Generate embeddings with progress tracking
        embeddings = []
        for i, text in enumerate(texts):
            embedding = get_embedding_for_text(text, bert_tokenizer, bert_model)
            embeddings.append(embedding)
            progress = (i + 1) / len(texts) * 0.4
            progress_bar.progress(progress, text=f"Generated embeddings for {i+1}/{len(texts)} poems...")
        
        embeddings = np.array(embeddings)
        
        # Process emotions with progress tracking
        for i, text in enumerate(texts):
            emotion = classify_emotion(text, emotion_classifier)
            all_emotions.append(emotion)
            progress = 0.4 + ((i + 1) / len(texts) * 0.3)
            progress_bar.progress(progress, text=f"Classified emotions for {i+1}/{len(texts)} poems...")

        try:
            # Fit topic model
            topics, _ = topic_model.fit_transform(texts, embeddings)
            
            # Format results
            top_topics = format_topics(topic_model, Counter(topics).most_common(top_n))
            top_emotions = format_emotions(Counter(all_emotions).most_common(top_n))

            summaries.append({
                'country': country,
                'total_poems': len(texts),
                'top_topics': top_topics,
                'top_emotions': top_emotions
            })
            progress_bar.progress(1.0, text="Processing complete!")
            
        except Exception as e:
            st.warning(f"Could not generate topics for {country}: {str(e)}")
            continue

    return summaries, topic_model

# Load models
try:
    bert_tokenizer, bert_model, emotion_classifier = load_models()
    st.success("Models loaded successfully!")
except Exception as e:
    st.error(f"Error loading models: {str(e)}")
    st.stop()

# Main app interface
st.title("๐Ÿ“š Arabic Poem Analysis")
st.write("Upload a CSV or Excel file containing Arabic poems with columns `country` and `poem`.")

# File upload
uploaded_file = st.file_uploader("Choose a file", type=["csv", "xlsx"])

if uploaded_file is not None:
    try:
        # Read the file
        if uploaded_file.name.endswith('.csv'):
            df = pd.read_csv(uploaded_file)
        else:
            df = pd.read_excel(uploaded_file)
        
        # Validate columns
        required_columns = ['country', 'poem']
        if not all(col in df.columns for col in required_columns):
            st.error("File must contain 'country' and 'poem' columns.")
            st.stop()
        
        # Clean data
        df['country'] = df['country'].str.strip()
        df = df.dropna(subset=['country', 'poem'])
        
        # Process data
        top_n = st.number_input("Number of top topics/emotions to display:", 
                               min_value=1, max_value=100, value=10)
        
        if st.button("Process Data"):
            with st.spinner("Processing your data..."):
                summaries, topic_model = process_and_summarize(df, top_n=top_n)
                
                if summaries:
                    st.success("Analysis complete!")
                    
                    # Display results in tabs
                    tab1, tab2 = st.tabs(["Country Summaries", "Global Topics"])
                    
                    with tab1:
                        for summary in summaries:
                            with st.expander(f"๐Ÿ“ {summary['country']} ({summary['total_poems']} poems)"):
                                col1, col2 = st.columns(2)
                                
                                with col1:
                                    st.subheader("Top Topics")
                                    for topic in summary['top_topics']:
                                        st.write(f"โ€ข {topic['topic']}: {topic['count']} poems")
                                
                                with col2:
                                    st.subheader("Emotions")
                                    for emotion in summary['top_emotions']:
                                        st.write(f"โ€ข {emotion['emotion']}: {emotion['count']} poems")
                    
                    with tab2:
                        st.subheader("Global Topic Distribution")
                        topic_info = topic_model.get_topic_info()
                        for _, row in topic_info.iterrows():
                            if row['Topic'] == -1:
                                topic_name = "Miscellaneous"
                            else:
                                words = topic_model.get_topic(row['Topic'])
                                topic_name = " | ".join([word for word, _ in words[:5]])
                            st.write(f"โ€ข Topic {row['Topic']}: {topic_name} ({row['Count']} poems)")
                
    except Exception as e:
        st.error(f"Error processing file: {str(e)}")
else:
    st.info("๐Ÿ‘† Upload a file to get started!")
    
    # Example format
    st.write("### Expected File Format:")
    example_df = pd.DataFrame({
        'country': ['Egypt', 'Palestine'],
        'poem': ['ู‚ุตูŠุฏุฉ ู…ุตุฑูŠุฉ', 'ู‚ุตูŠุฏุฉ ูู„ุณุทูŠู†ูŠุฉ ']
    })
    st.dataframe(example_df)