File size: 5,547 Bytes
d189069
 
6e0397b
d189069
 
6e0397b
d189069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e0397b
d189069
 
 
6e0397b
d189069
 
 
6e0397b
 
 
 
 
 
 
 
d189069
 
 
 
 
 
 
 
 
 
 
 
 
6e0397b
d189069
 
 
 
 
 
 
 
6e0397b
d189069
 
6e0397b
d189069
 
 
 
 
 
 
 
 
 
 
 
 
6e0397b
d189069
 
 
 
 
 
6e0397b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
498ae97
6e0397b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
498ae97
6e0397b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# from fastapi import FastAPI, HTTPException
# from pydantic import BaseModel
# from transformers import AutoModelForCausalLM, AutoTokenizer
# import torch
# from huggingface_hub import snapshot_download
# from safetensors.torch import load_file

# class ModelInput(BaseModel):
#     prompt: str
#     max_new_tokens: int = 50

# app = FastAPI()

# # Define model paths
# base_model_path = "HuggingFaceTB/SmolLM2-135M-Instruct"
# adapter_path = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs"

# try:
#     # First load the base model
#     print("Loading base model...")
#     model = AutoModelForCausalLM.from_pretrained(
#         base_model_path,
#         torch_dtype=torch.float16,
#         trust_remote_code=True,
#         device_map="auto"
#     )
    
#     # Load tokenizer from base model
#     print("Loading tokenizer...")
#     tokenizer = AutoTokenizer.from_pretrained(base_model_path)
    
#     # Download adapter weights
#     print("Downloading adapter weights...")
#     adapter_path_local = snapshot_download(adapter_path)
    
#     # Load the safetensors file
#     print("Loading adapter weights...")
#     state_dict = load_file(f"{adapter_path_local}/adapter_model.safetensors")
    
#     # Load state dict into model
#     model.load_state_dict(state_dict, strict=False)
    
#     print("Model and adapter loaded successfully!")

# except Exception as e:
#     print(f"Error during model loading: {e}")
#     raise

# def generate_response(model, tokenizer, instruction, max_new_tokens=128):
#     """Generate a response from the model based on an instruction."""
#     try:
#         messages = [{"role": "user", "content": instruction}]
#         input_text = tokenizer.apply_chat_template(
#             messages, tokenize=False, add_generation_prompt=True
#         )
        
#         inputs = tokenizer.encode(input_text, return_tensors="pt").to(model.device)
#         outputs = model.generate(
#             inputs,
#             max_new_tokens=max_new_tokens,
#             temperature=0.2,
#             top_p=0.9,
#             do_sample=True,
#         )
        
#         response = tokenizer.decode(outputs[0], skip_special_tokens=True)
#         return response
    
#     except Exception as e:
#         raise ValueError(f"Error generating response: {e}")

# @app.post("/generate")
# async def generate_text(input: ModelInput):
#     try:
#         response = generate_response(
#             model=model,
#             tokenizer=tokenizer,
#             instruction=input.prompt,
#             max_new_tokens=input.max_new_tokens
#         )
#         return {"generated_text": response}
    
#     except Exception as e:
#         raise HTTPException(status_code=500, detail=str(e))

# @app.get("/")
# async def root():
#     return {"message": "Welcome to the Model API!"}






# //////////////////////////////////////////

from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from huggingface_hub import snapshot_download
from safetensors.torch import load_file

class ModelInput(BaseModel):
    prompt: str
    max_new_tokens: int = 2048

app = FastAPI()

# Define model paths
base_model_path = "HuggingFaceTB/SmolLM2-135M-Instruct"
adapter_path = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs"

try:
    # Load the base model
    print("Loading base model...")
    model = AutoModelForCausalLM.from_pretrained(
        base_model_path,
        torch_dtype=torch.float16,
        trust_remote_code=True,
        device_map="auto"
    )

    # Load tokenizer
    print("Loading tokenizer...")
    tokenizer = AutoTokenizer.from_pretrained(base_model_path)

    # Download adapter weights
    print("Downloading adapter weights...")
    adapter_path_local = snapshot_download(repo_id=adapter_path)

    # Load the safetensors file
    print("Loading adapter weights...")
    adapter_file = f"{adapter_path_local}/adapter_model.safetensors"
    state_dict = load_file(adapter_file)

    # Load state dict into model
    print("Applying adapter weights...")
    model.load_state_dict(state_dict, strict=False)

    print("Model and adapter loaded successfully!")

except Exception as e:
    print(f"Error during model loading: {e}")
    raise

def generate_response(model, tokenizer, instruction, max_new_tokens=2048):
    """Generate a response from the model based on an instruction."""
    try:
        # Format input for the model
        inputs = tokenizer.encode(instruction, return_tensors="pt").to(model.device)
        
        # Generate response
        outputs = model.generate(
            inputs,
            max_new_tokens=max_new_tokens,
            temperature=0.7,
            top_p=0.9,
            do_sample=True,
        )

        # Decode and return the output
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
        return response

    except Exception as e:
        raise ValueError(f"Error generating response: {e}")

@app.post("/generate")
async def generate_text(input: ModelInput):
    try:
        response = generate_response(
            model=model,
            tokenizer=tokenizer,
            instruction=input.prompt,
            max_new_tokens=input.max_new_tokens
        )
        return {"generated_text": response}

    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/")
async def root():
    return {"message": "Welcome to the Model API!"}