Spaces:
Sleeping
Sleeping
File size: 25,443 Bytes
6931cbb ea7a22d 6931cbb ea7a22d 6931cbb ac72d36 ea7a22d 6931cbb ac72d36 ea7a22d 6931cbb ea7a22d 6931cbb ea7a22d 6931cbb ea7a22d ac72d36 ea7a22d ac72d36 ea7a22d ac72d36 ea7a22d ac72d36 ea7a22d ac72d36 ea7a22d ac72d36 ea7a22d ac72d36 ea7a22d ac72d36 ea7a22d ac72d36 ea7a22d ac72d36 ea7a22d ac72d36 ea7a22d ac72d36 ea7a22d 6931cbb ea7a22d 6931cbb ea7a22d 6931cbb ac72d36 ea7a22d 6931cbb ea7a22d ac72d36 6931cbb ea7a22d ac72d36 ea7a22d ac72d36 ea7a22d ac72d36 ea7a22d ac72d36 ea7a22d 6931cbb ac72d36 ea7a22d ac72d36 ea7a22d ac72d36 ea7a22d ac72d36 6931cbb ea7a22d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 |
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
from abc import ABC, abstractmethod
from typing import List, Dict, Any, Tuple
from collections import defaultdict
from tqdm import tqdm
import pandas as pd
from datetime import datetime, date
from datasets import load_dataset, load_from_disk
from collections import Counter
import yaml, json, requests, sys, os, time
import concurrent.futures
ts = time.time()
anthropic_key = "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"
# anthropic_client = anthropic.Anthropic(api_key=anthropic_key)
openai_key = "sk-None-TMT98W6ksCIYY6w0UI66T3BlbkFJva1LamMQXbenkcnYqvs6"
# openai_client = EmbeddingClient(OpenAI(api_key=openai_key))
from nltk.corpus import stopwords
import nltk
from openai import OpenAI
import anthropic
import cohere
import faiss
import spacy
from string import punctuation
import pytextrank
nlp = spacy.load("en_core_web_sm")
nlp.add_pipe("textrank")
try:
stopwords.words('english')
except:
nltk.download('stopwords')
stopwords.words('english')
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource
from bokeh.palettes import Spectral10
st.image('local_files/pathfinder_logo.png')
st.expander("About", expanded=False).write(
"""
Pathfinder v2.0 is a framework for searching and visualizing astronomy papers on the [arXiv](https://arxiv.org/) and [ADS](https://ui.adsabs.harvard.edu/) using the context
sensitivity from modern large language models (LLMs) to better parse patterns in paper contexts.
This tool was built during the [JSALT workshop](https://www.clsp.jhu.edu/2024-jelinek-summer-workshop-on-speech-and-language-technology/) to do awesome things.
**π Select a tool from the sidebar** to see some examples
of what this framework can do!
### Tool summary:
- Please wait while the initial data loads and compiles, this takes about a minute initially.
- `Paper search` looks for relevant papers given an arxiv id or a question.
This is not meant to be a replacement to existing tools like the
[ADS](https://ui.adsabs.harvard.edu/),
[arxivsorter](https://www.arxivsorter.org/), semantic search or google scholar, but rather a supplement to find papers
that otherwise might be missed during a literature survey.
It is trained on astro-ph (astrophysics of galaxies) papers up to last-year-ish mined from arxiv and supplemented with ADS metadata,
if you are interested in extending it please reach out!
Also add: more pages, actual generation, diff. toggles for retrieval/gen, feedback form, socials, literature, contact us, copyright, collaboration, etc.
The image below shows a representation of all the astro-ph.GA papers that can be explored in more detail
using the `Arxiv embedding` page. The papers tend to cluster together by similarity, and result in an
atlas that shows well studied (forests) and currently uncharted areas (water).
"""
)
if 'arxiv_corpus' not in st.session_state:
with st.spinner('loading data...'):
try:
arxiv_corpus = load_from_disk('data/')
arxiv_corpus.add_faiss_index('embed')
except:
st.write('downloading data')
arxiv_corpus = load_dataset('kiyer/pathfinder_arxiv_data',split='train')
arxiv_corpus.add_faiss_index('embed')
arxiv_corpus.save_to_disk('data/')
st.session_state.arxiv_corpus = arxiv_corpus
st.toast('loaded arxiv corpus')
else:
arxiv_corpus = st.session_state.arxiv_corpus
if 'ids' not in st.session_state:
st.session_state.ids = arxiv_corpus['ads_id']
st.session_state.titles = arxiv_corpus['title']
st.session_state.abstracts = arxiv_corpus['abstract']
st.session_state.cites = arxiv_corpus['cites']
st.session_state.years = arxiv_corpus['date']
st.session_state.kws = arxiv_corpus['keywords']
st.toast('done caching. time taken: %.2f sec' %(time.time()-ts))
#----------------------------------------------------------------
class Filter():
def filter(self, query: str, arxiv_id: str) -> List[str]:
pass
class CitationFilter(Filter): # can do it with all metadata
def __init__(self, corpus):
self.corpus = corpus
ids = ids
cites = cites
self.citation_counts = {ids[i]: cites[i] for i in range(len(ids))}
def citation_weight(self, x, shift, scale):
return 1 / (1 + np.exp(-1 * (x - shift) / scale)) # sigmoid function
def filter(self, doc_scores, weight = 0.1): # additive weighting
citation_count = np.array([self.citation_counts[doc[0]] for doc in doc_scores])
cmean, cstd = np.median(citation_count), np.std(citation_count)
citation_score = self.citation_weight(citation_count, cmean, cstd)
for i, doc in enumerate(doc_scores):
doc_scores[i][2] += weight * citation_score[i]
class DateFilter(Filter): # include time weighting eventually
def __init__(self, document_dates):
self.document_dates = document_dates
def parse_date(self, arxiv_id: str) -> datetime: # only for documents
if arxiv_id.startswith('astro-ph'):
arxiv_id = arxiv_id.split('astro-ph')[1].split('_arXiv')[0]
try:
year = int("20" + arxiv_id[:2])
month = int(arxiv_id[2:4])
except:
year = 2023
month = 1
return date(year, month, 1)
def weight(self, time, shift, scale):
return 1 / (1 + np.exp((time - shift) / scale))
def evaluate_filter(self, year, filter_string):
try:
# Use ast.literal_eval to safely evaluate the expression
result = eval(filter_string, {"__builtins__": None}, {"year": year})
return result
except Exception as e:
print(f"Error evaluating filter: {e}")
return False
def filter(self, docs, boolean_date = None, min_date = None, max_date = None, time_score = 0):
filtered = []
if boolean_date is not None:
boolean_date = boolean_date.replace("AND", "and").replace("OR", "or")
for doc in docs:
if self.evaluate_filter(self.document_dates[doc[0]].year, boolean_date):
filtered.append(doc)
else:
if min_date == None: min_date = date(1990, 1, 1)
if max_date == None: max_date = date(2024, 7, 3)
for doc in docs:
if self.document_dates[doc[0]] >= min_date and self.document_dates[doc[0]] <= max_date:
filtered.append(doc)
if time_score is not None: # apply time weighting
for i, item in enumerate(filtered):
time_diff = (max_date - self.document_dates[filtered[i][0]]).days / 365
filtered[i][2] += time_score * 0.1 * self.weight(time_diff, 5, 5)
return filtered
class KeywordFilter(Filter):
def __init__(self, corpus,
remove_capitals: bool = True, metadata = None, ne_only = True, verbose = False):
self.index_path = 'keyword_index.json'
# self.metadata = metadata
self.remove_capitals = remove_capitals
self.ne_only = ne_only
self.stopwords = set(stopwords.words('english'))
self.verbose = verbose
self.index = None
self.kws = st.session_state.kws
self.ids = st.session_state.ids
self.titles = st.session_state.titles
self.load_or_build_index()
def preprocess_text(self, text: str) -> str:
text = ''.join(char for char in text if char.isalnum() or char.isspace())
if self.remove_capitals: text = text.lower()
return ' '.join(word for word in text.split() if word.lower() not in self.stopwords)
def build_index(self): # include the title in the index
print("Building index...")
self.index = {}
for i in range(len(self.kws)):
paper = self.ids[i]
title = self.titles[i]
title_keywords = set()
for keyword in set(self.kws[i]) | title_keywords:
term = ' '.join(word for word in keyword.lower().split() if word.lower() not in self.stopwords)
if term not in self.index:
self.index[term] = []
self.index[term].append(self.ids[i])
with open(self.index_path, 'w') as f:
json.dump(self.index, f)
def load_index(self):
print("Loading existing index...")
with open(self.index_path, 'rb') as f:
self.index = json.load(f)
print("Index loaded successfully.")
def load_or_build_index(self):
if os.path.exists(self.index_path):
self.load_index()
else:
self.build_index()
def parse_doc(self, doc):
local_kws = []
for phrase in doc._.phrases:
local_kws.append(phrase.text.lower())
return [self.preprocess_text(word) for word in local_kws]
def get_propn(self, doc):
result = []
working_str = ''
for token in doc:
if(token.text in nlp.Defaults.stop_words or token.text in punctuation):
if working_str != '':
result.append(working_str.strip())
working_str = ''
if(token.pos_ == "PROPN"):
working_str += token.text + ' '
if working_str != '': result.append(working_str.strip())
return [self.preprocess_text(word) for word in result]
def filter(self, query: str, doc_ids = None):
doc = nlp(query)
query_keywords = self.parse_doc(doc)
nouns = self.get_propn(doc)
if self.verbose: print('keywords:', query_keywords)
if self.verbose: print('proper nouns:', nouns)
filtered = set()
if len(query_keywords) > 0 and not self.ne_only:
for keyword in query_keywords:
if keyword != '' and keyword in self.index.keys(): filtered |= set(self.index[keyword])
if len(nouns) > 0:
ne_results = set()
for noun in nouns:
if noun in self.index.keys(): ne_results |= set(self.index[noun])
if self.ne_only: filtered = ne_results # keep only named entity results
else: filtered &= ne_results # take the intersection
if doc_ids is not None: filtered &= doc_ids # apply filter to results
return filtered
class EmbeddingRetrievalSystem():
def __init__(self, weight_citation = False, weight_date = False, weight_keywords = False):
self.ids = st.session_state.ids
self.years = st.session_state.years
self.abstract = st.session_state.abstracts
self.client = OpenAI(api_key = openai_key)
self.embed_model = "text-embedding-3-small"
self.dataset = arxiv_corpus
self.kws = st.session_state.kws
self.weight_citation = weight_citation
self.weight_date = weight_date
self.weight_keywords = weight_keywords
self.id_to_index = {self.ids[i]: i for i in range(len(self.ids))}
# self.citation_filter = CitationFilter(self.dataset)
# self.date_filter = DateFilter(self.dataset['date'])
self.keyword_filter = KeywordFilter(corpus=self.dataset, remove_capitals=True)
def parse_date(self, id):
# indexval = np.where(self.ids == id)[0][0]
indexval = id
return self.years[indexval]
def make_embedding(self, text):
str_embed = self.client.embeddings.create(input = [text], model = self.embed_model).data[0].embedding
return str_embed
def embed_batch(self, texts: List[str]) -> List[np.ndarray]:
embeddings = self.client.embeddings.create(input=texts, model=self.embed_model).data
return [np.array(embedding.embedding, dtype=np.float32) for embedding in embeddings]
def init_filters(self):
self.citation_filter = []
self.date_filter = []
self.keyword_filter = []
def get_query_embedding(self, query):
return self.make_embedding(query)
def analyze_temporal_query(self, query):
return
def calc_faiss(self, query_embedding, top_k = 100):
# xq = query_embedding.reshape(-1,1).T.astype('float32')
# D, I = self.index.search(xq, top_k)
# return I[0], D[0]
tmp = self.dataset.search('embed',query_embedding, k=top_k)
return [tmp.indices, tmp.scores]
def rank_and_filter(self, query, query_embedding, query_date, top_k = 10, return_scores=False, time_result=None):
topk_indices, similarities = self.calc_faiss(np.array(query_embedding), top_k = 300)
if self.weight_keywords:
keyword_matches = self.keyword_filter.filter(query)
kw_indices = np.zeros_like(similarities)
for s in keyword_matches:
if self.id_to_index[s] in topk_indices:
# print('yes', self.id_to_index[s], topk_indices[np.where(topk_indices == self.id_to_index[s])[0]])
similarities[np.where(topk_indices == self.id_to_index[s])[0]] = similarities[np.where(topk_indices == self.id_to_index[s])[0]] * 10.
similarities = similarities / 10.
filtered_results = [[topk_indices[i], similarities[i]] for i in range(len(similarities))]
top_results = sorted(filtered_results, key=lambda x: x[1], reverse=True)[:top_k]
if return_scores:
return {doc[0]: doc[1] for doc in top_results}
# Only keep the document IDs
top_results = [doc[0] for doc in top_results]
return top_results
def retrieve(self, query, top_k, time_result=None, query_date = None, return_scores = False):
query_embedding = self.get_query_embedding(query)
# Judge time relevance
if time_result is None:
if self.weight_date:
time_result, time_taken = self.analyze_temporal_query(query, self.anthropic_client)
else:
time_result = {'has_temporal_aspect': False, 'expected_year_filter': None, 'expected_recency_weight': None}
top_results = self.rank_and_filter(query,
query_embedding,
query_date,
top_k,
return_scores = return_scores,
time_result = time_result)
return top_results
class HydeRetrievalSystem(EmbeddingRetrievalSystem):
def __init__(self, generation_model: str = "claude-3-haiku-20240307",
embedding_model: str = "text-embedding-3-small",
temperature: float = 0.5,
max_doclen: int = 500,
generate_n: int = 1,
embed_query = True,
conclusion = False, **kwargs):
# Handle the kwargs for the superclass init -- filters/citation weighting
super().__init__(**kwargs)
if max_doclen * generate_n > 8191:
raise ValueError("Too many tokens. Please reduce max_doclen or generate_n.")
self.embedding_model = embedding_model
self.generation_model = generation_model
# HYPERPARAMETERS
self.temperature = temperature # generation temperature
self.max_doclen = max_doclen # max tokens for generation
self.generate_n = generate_n # how many documents
self.embed_query = embed_query # embed the query vector?
self.conclusion = conclusion # generate conclusion as well?
self.anthropic_key = anthropic_key
self.generation_client = anthropic.Anthropic(api_key = self.anthropic_key)
def retrieve(self, query: str, top_k: int = 10, return_scores = False, time_result = None) -> List[Tuple[str, str, float]]:
if time_result is None:
if self.weight_date: time_result, time_taken = analyze_temporal_query(query, self.anthropic_client)
else: time_result = {'has_temporal_aspect': False, 'expected_year_filter': None, 'expected_recency_weight': None}
docs = self.generate_docs(query)
doc_embeddings = self.embed_docs(docs)
if self.embed_query:
query_emb = self.embed_docs([query])[0]
doc_embeddings.append(query_emb)
embedding = np.mean(np.array(doc_embeddings), axis = 0)
top_results = self.rank_and_filter(query, embedding, query_date=None, top_k = top_k, return_scores = return_scores, time_result = time_result)
return top_results
def generate_doc(self, query: str):
prompt = """You are an expert astronomer. Given a scientific query, generate the abstract"""
if self.conclusion:
prompt += " and conclusion"
prompt += """ of an expert-level research paper
that answers the question. Stick to a maximum length of {} tokens and return just the text of the abstract and conclusion.
Do not include labels for any section. Use research-specific jargon.""".format(self.max_doclen)
message = self.generation_client.messages.create(
model = self.generation_model,
max_tokens = self.max_doclen,
temperature = self.temperature,
system = prompt,
messages=[{ "role": "user",
"content": [{"type": "text", "text": query,}] }]
)
return message.content[0].text
def generate_docs(self, query: str):
docs = []
with concurrent.futures.ThreadPoolExecutor() as executor:
future_to_query = {executor.submit(self.generate_doc, query): query for i in range(self.generate_n)}
for future in concurrent.futures.as_completed(future_to_query):
query = future_to_query[future]
try:
data = future.result()
docs.append(data)
except Exception as exc:
pass
return docs
def embed_docs(self, docs: List[str]):
return self.embed_batch(docs)
class HydeCohereRetrievalSystem(HydeRetrievalSystem):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.cohere_key = "Of1MjzFjGmvzBAqdvNHTQLkAjecPcOKpiIPAnFMn"
self.cohere_client = cohere.Client(self.cohere_key)
def retrieve(self, query: str,
top_k: int = 10,
rerank_top_k: int = 250,
return_scores = False, time_result = None,
reweight = False) -> List[Tuple[str, str, float]]:
if time_result is None:
if self.weight_date: time_result, time_taken = analyze_temporal_query(query, self.anthropic_client)
else: time_result = {'has_temporal_aspect': False, 'expected_year_filter': None, 'expected_recency_weight': None}
top_results = super().retrieve(query, top_k = rerank_top_k, time_result = time_result)
# doc_texts = self.get_document_texts(top_results)
# docs_for_rerank = [f"Abstract: {doc['abstract']}\nConclusions: {doc['conclusions']}" for doc in doc_texts]
docs_for_rerank = [self.abstract[i] for i in top_results]
if len(docs_for_rerank) == 0:
return []
reranked_results = self.cohere_client.rerank(
query=query,
documents=docs_for_rerank,
model='rerank-english-v3.0',
top_n=top_k
)
final_results = []
for result in reranked_results.results:
doc_id = top_results[result.index]
doc_text = docs_for_rerank[result.index]
score = float(result.relevance_score)
final_results.append([doc_id, "", score])
if reweight:
if time_result['has_temporal_aspect']:
final_results = self.date_filter.filter(final_results, time_score = time_result['expected_recency_weight'])
if self.weight_citation: self.citation_filter.filter(final_results)
if return_scores:
return {result[0]: result[2] for result in final_results}
return [doc[0] for doc in final_results]
def embed_docs(self, docs: List[str]):
return self.embed_batch(docs)
# ----------------------------------------------------------------
if 'ec' not in st.session_state:
ec = EmbeddingRetrievalSystem(weight_keywords=True)
st.session_state.ec = ec
st.toast('loaded retrieval system')
else:
ec = st.session_state.ec
# Function to simulate question answering (replace with actual implementation)
def answer_question(question, keywords, toggles, method, question_type):
# Simulated answer (replace with actual logic)
# return f"Answer to '{question}' using method {method} for {question_type} question."
return run_ret(question, 10)
def get_papers(ids):
papers, scores, links = [], [], []
for i in ids:
papers.append(st.session_state.titles[i])
scores.append(ids[i])
links.append('https://ui.adsabs.harvard.edu/abs/'+st.session_state.arxiv_corpus['bibcode'][i]+'/abstract')
return pd.DataFrame({
'Title': papers,
'Relevance': scores,
'Link': links
})
# Function to create embedding plot (replace with actual implementation)
def create_embedding_plot():
# Simulated embedding data (replace with actual embedding calculation)
source = ColumnDataSource(data=dict(
x=[1, 2, 3, 4, 5],
y=[6, 7, 2, 4, 5],
colors=Spectral10[0:5],
labels=['A', 'B', 'C', 'D', 'E']
))
p = figure(width=400, height=400, title="Embedding Map")
p.circle('x', 'y', size=20, source=source, color='colors', alpha=0.6)
return p
# Function to simulate keyword extraction (replace with actual implementation)
def extract_keywords(question):
# Simulated keyword extraction (replace with actual logic)
return ['keyword1', 'keyword2', 'keyword3']
# Function to estimate consensus (replace with actual implementation)
def estimate_consensus():
# Simulated consensus estimation (replace with actual calculation)
return 0.75
def run_ret(query, top_k):
rs = ec.retrieve(query, top_k, return_scores=True)
output_str = ''
for i in rs:
if rs[i] > 0.5:
output_str = output_str + '---> ' + st.session_state.titles[i] + '(score: %.2f) \n' %rs[i]
else:
output_str = output_str + '---> ' + st.session_state.titles[i] + '(score: %.2f) \n' %rs[i]
return output_str, rs
# Streamlit app
def main():
# st.title("Question Answering App")
# Sidebar (Inputs)
st.sidebar.header("Inputs")
extra_keywords = st.sidebar.text_input("Enter extra keywords (comma-separated):")
st.sidebar.subheader("Toggles")
toggle_a = st.sidebar.checkbox("Toggle A")
toggle_b = st.sidebar.checkbox("Toggle B")
toggle_c = st.sidebar.checkbox("Toggle C")
method = st.sidebar.radio("Choose a method:", ["h1", "h2", "h3"])
question_type = st.sidebar.selectbox("Select question type:", ["Type 1", "Type 2", "Type 3"])
# store_output = st.sidebar.checkbox("Store the output")
store_output = st.sidebar.button("Save output")
# Main page (Outputs)
question = st.text_input("Ask me anything:")
submit_button = st.button("Submit")
if submit_button:
# Process inputs
keywords = [kw.strip() for kw in extra_keywords.split(',')] if extra_keywords else []
toggles = {'A': toggle_a, 'B': toggle_b, 'C': toggle_c}
# Generate outputs
answer, rs = answer_question(question, keywords, toggles, method, question_type)
papers_df = get_papers(rs)
embedding_plot = create_embedding_plot()
triggered_keywords = extract_keywords(question)
consensus = estimate_consensus()
# Display outputs
st.subheader("Answer")
st.write(answer)
with st.expander("Papers used", expanded=True):
st.dataframe(papers_df)
col1, col2 = st.columns(2)
with col1:
st.subheader("Embedding Map")
st.bokeh_chart(embedding_plot)
st.subheader("Triggered Keywords")
st.write(", ".join(triggered_keywords))
with col2:
st.subheader("Question Type")
st.write(question_type)
st.subheader("Consensus Estimate")
st.write(f"{consensus:.2%}")
# st.subheader("Papers Used")
# st.dataframe(papers_df)
else:
st.info("Use the sidebar to input parameters and submit to see results.")
if store_output:
st.toast("Output stored successfully!")
if __name__ == "__main__":
main() |