File size: 25,443 Bytes
6931cbb
ea7a22d
6931cbb
ea7a22d
 
 
 
 
 
 
 
 
6931cbb
ac72d36
ea7a22d
 
6931cbb
ac72d36
 
 
 
 
 
 
ea7a22d
 
 
 
 
 
6931cbb
ea7a22d
 
 
6931cbb
ea7a22d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6931cbb
ea7a22d
ac72d36
ea7a22d
 
 
 
ac72d36
ea7a22d
 
 
ac72d36
ea7a22d
 
 
ac72d36
 
ea7a22d
 
 
 
 
 
 
ac72d36
 
ea7a22d
ac72d36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea7a22d
ac72d36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea7a22d
ac72d36
 
 
 
ea7a22d
 
 
ac72d36
 
ea7a22d
ac72d36
 
 
 
 
 
 
 
 
ea7a22d
ac72d36
 
 
ea7a22d
 
ac72d36
ea7a22d
 
 
 
 
 
 
 
 
 
 
 
 
6931cbb
ea7a22d
 
 
 
6931cbb
ea7a22d
 
 
 
6931cbb
ac72d36
 
 
 
 
 
 
 
 
 
ea7a22d
 
6931cbb
ea7a22d
ac72d36
6931cbb
ea7a22d
 
 
 
 
 
 
 
 
 
 
ac72d36
ea7a22d
ac72d36
 
ea7a22d
 
ac72d36
 
 
 
ea7a22d
 
 
 
 
 
ac72d36
 
ea7a22d
 
 
6931cbb
ac72d36
 
 
 
 
 
 
 
ea7a22d
 
 
 
 
ac72d36
 
ea7a22d
 
 
 
 
 
 
 
 
 
 
ac72d36
 
 
 
 
 
ea7a22d
 
ac72d36
 
 
6931cbb
ea7a22d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
import streamlit as st
st.set_page_config(layout="wide")

import numpy as np
from abc import ABC, abstractmethod
from typing import List, Dict, Any, Tuple
from collections import defaultdict
from tqdm import tqdm
import pandas as pd 
from datetime import datetime, date
from datasets import load_dataset, load_from_disk
from collections import Counter

import yaml, json, requests, sys, os, time
import concurrent.futures
ts = time.time()


anthropic_key = "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"
# anthropic_client = anthropic.Anthropic(api_key=anthropic_key)

openai_key = "sk-None-TMT98W6ksCIYY6w0UI66T3BlbkFJva1LamMQXbenkcnYqvs6"
# openai_client = EmbeddingClient(OpenAI(api_key=openai_key))

from nltk.corpus import stopwords
import nltk
from openai import OpenAI
import anthropic
import cohere
import faiss

import spacy
from string import punctuation
import pytextrank

nlp = spacy.load("en_core_web_sm")
nlp.add_pipe("textrank")

try:
    stopwords.words('english')
except:
    nltk.download('stopwords')
    stopwords.words('english')

from bokeh.plotting import figure
from bokeh.models import ColumnDataSource
from bokeh.palettes import Spectral10

st.image('local_files/pathfinder_logo.png')

st.expander("About", expanded=False).write(
        """
        Pathfinder v2.0 is a framework for searching and visualizing astronomy papers on the [arXiv](https://arxiv.org/) and [ADS](https://ui.adsabs.harvard.edu/) using the context
        sensitivity from modern large language models (LLMs) to better parse patterns in paper contexts.
        
        This tool was built during the [JSALT workshop](https://www.clsp.jhu.edu/2024-jelinek-summer-workshop-on-speech-and-language-technology/) to do awesome things.

        **πŸ‘ˆ Select a tool from the sidebar** to see some examples
        of what this framework can do!

        ### Tool summary:
        - Please wait while the initial data loads and compiles, this takes about a minute initially.
        - `Paper search` looks for relevant papers given an arxiv id or a question.

        This is not meant to be a replacement to existing tools like the
        [ADS](https://ui.adsabs.harvard.edu/),
        [arxivsorter](https://www.arxivsorter.org/), semantic search or google scholar, but rather a supplement to find papers
        that otherwise might be missed during a literature survey.
        It is trained on astro-ph (astrophysics of galaxies) papers up to last-year-ish mined from arxiv and supplemented with ADS metadata,
        if you are interested in extending it please reach out!
        
        
        Also add: more pages, actual generation, diff. toggles for retrieval/gen, feedback form, socials, literature, contact us, copyright, collaboration, etc.

        The image below shows a representation of all the astro-ph.GA papers that can be explored in more detail
        using the `Arxiv embedding` page. The papers tend to cluster together by similarity, and result in an
        atlas that shows well studied (forests) and currently uncharted areas (water).
        """
    )
    
    
    
    
if 'arxiv_corpus' not in st.session_state:
    with st.spinner('loading data...'):
        try:    
            arxiv_corpus = load_from_disk('data/')
            arxiv_corpus.add_faiss_index('embed')
        except:
            st.write('downloading data')
            arxiv_corpus = load_dataset('kiyer/pathfinder_arxiv_data',split='train')
            arxiv_corpus.add_faiss_index('embed')
            arxiv_corpus.save_to_disk('data/')
        st.session_state.arxiv_corpus = arxiv_corpus
        st.toast('loaded arxiv corpus')
else:
    arxiv_corpus = st.session_state.arxiv_corpus
    
if 'ids' not in st.session_state:
    st.session_state.ids = arxiv_corpus['ads_id']
    st.session_state.titles = arxiv_corpus['title']
    st.session_state.abstracts = arxiv_corpus['abstract']
    st.session_state.cites = arxiv_corpus['cites']
    st.session_state.years = arxiv_corpus['date']
    st.session_state.kws = arxiv_corpus['keywords']
    st.toast('done caching. time taken: %.2f sec' %(time.time()-ts))
   
    
#----------------------------------------------------------------

class Filter():
    def filter(self, query: str, arxiv_id: str) -> List[str]:
        pass

class CitationFilter(Filter): # can do it with all metadata
    def __init__(self, corpus):
        self.corpus = corpus
        ids = ids
        cites = cites
        self.citation_counts = {ids[i]: cites[i] for i in range(len(ids))}

    def citation_weight(self, x, shift, scale):
        return 1 / (1 + np.exp(-1 * (x - shift) / scale)) # sigmoid function

    def filter(self, doc_scores, weight = 0.1): # additive weighting
        citation_count = np.array([self.citation_counts[doc[0]] for doc in doc_scores])
        cmean, cstd = np.median(citation_count), np.std(citation_count)
        citation_score = self.citation_weight(citation_count, cmean, cstd)

        for i, doc in enumerate(doc_scores):
            doc_scores[i][2] += weight * citation_score[i]

class DateFilter(Filter): # include time weighting eventually
    def __init__(self, document_dates):
        self.document_dates = document_dates

    def parse_date(self, arxiv_id: str) -> datetime: # only for documents
        if arxiv_id.startswith('astro-ph'):
            arxiv_id = arxiv_id.split('astro-ph')[1].split('_arXiv')[0]
        try:
            year = int("20" + arxiv_id[:2])
            month = int(arxiv_id[2:4])
        except:
            year = 2023
            month = 1
        return date(year, month, 1)

    def weight(self, time, shift, scale):
        return 1 / (1 + np.exp((time - shift) / scale))

    def evaluate_filter(self, year, filter_string):
        try:
            # Use ast.literal_eval to safely evaluate the expression
            result = eval(filter_string, {"__builtins__": None}, {"year": year})
            return result
        except Exception as e:
            print(f"Error evaluating filter: {e}")
            return False

    def filter(self, docs, boolean_date = None, min_date = None, max_date = None, time_score = 0):
        filtered = []

        if boolean_date is not None:
            boolean_date = boolean_date.replace("AND", "and").replace("OR", "or")
            for doc in docs:
                if self.evaluate_filter(self.document_dates[doc[0]].year, boolean_date):
                    filtered.append(doc)

        else:
            if min_date == None: min_date = date(1990, 1, 1)
            if max_date == None: max_date = date(2024, 7, 3)

            for doc in docs:
                if self.document_dates[doc[0]] >= min_date and self.document_dates[doc[0]] <= max_date:
                    filtered.append(doc)

        if time_score is not None: # apply time weighting
            for i, item in enumerate(filtered):
                time_diff = (max_date - self.document_dates[filtered[i][0]]).days / 365
                filtered[i][2] += time_score * 0.1 * self.weight(time_diff, 5, 5)

        return filtered

class KeywordFilter(Filter):
    def __init__(self, corpus,
                 remove_capitals: bool = True, metadata = None, ne_only = True, verbose = False):

        self.index_path = 'keyword_index.json'
        # self.metadata = metadata
        self.remove_capitals = remove_capitals
        self.ne_only = ne_only
        self.stopwords = set(stopwords.words('english'))
        self.verbose = verbose
        self.index = None
        self.kws = st.session_state.kws
        self.ids = st.session_state.ids
        self.titles = st.session_state.titles

        self.load_or_build_index()

    def preprocess_text(self, text: str) -> str:
        text = ''.join(char for char in text if char.isalnum() or char.isspace())
        if self.remove_capitals: text = text.lower()
        return ' '.join(word for word in text.split() if word.lower() not in self.stopwords)

    def build_index(self): # include the title in the index
        print("Building index...")
        self.index = {}

        for i in range(len(self.kws)):
            paper = self.ids[i]
            title = self.titles[i]
            title_keywords = set()
            for keyword in set(self.kws[i]) | title_keywords:
                term = ' '.join(word for word in keyword.lower().split() if word.lower() not in self.stopwords)
                if term not in self.index:
                    self.index[term] = []
                self.index[term].append(self.ids[i])
                
        with open(self.index_path, 'w') as f:
            json.dump(self.index, f)

    def load_index(self):
        print("Loading existing index...")
        with open(self.index_path, 'rb') as f:
            self.index = json.load(f)

        print("Index loaded successfully.")

    def load_or_build_index(self):
        if os.path.exists(self.index_path):
            self.load_index()
        else:
            self.build_index()

    def parse_doc(self, doc):
        local_kws = []

        for phrase in doc._.phrases:
            local_kws.append(phrase.text.lower())

        return [self.preprocess_text(word) for word in local_kws]

    def get_propn(self, doc):
        result = []

        working_str = ''
        for token in doc:
            if(token.text in nlp.Defaults.stop_words or token.text in punctuation):
                if working_str != '':
                    result.append(working_str.strip())
                    working_str = ''

            if(token.pos_ == "PROPN"):
                working_str += token.text + ' '

        if working_str != '': result.append(working_str.strip())

        return [self.preprocess_text(word) for word in result]

    def filter(self, query: str, doc_ids = None):
        doc = nlp(query)
        query_keywords = self.parse_doc(doc)
        nouns = self.get_propn(doc)
        if self.verbose: print('keywords:', query_keywords)
        if self.verbose: print('proper nouns:', nouns)

        filtered = set()
        if len(query_keywords) > 0 and not self.ne_only:
            for keyword in query_keywords:
                if keyword != '' and keyword in self.index.keys(): filtered |= set(self.index[keyword])

        if len(nouns) > 0:
            ne_results = set()
            for noun in nouns:
                if noun in self.index.keys(): ne_results |= set(self.index[noun])

            if self.ne_only: filtered = ne_results # keep only named entity results
            else: filtered &= ne_results # take the intersection

        if doc_ids is not None: filtered &= doc_ids # apply filter to results
        return filtered

class EmbeddingRetrievalSystem():

    def __init__(self, weight_citation = False, weight_date = False, weight_keywords = False):
        
        self.ids = st.session_state.ids
        self.years = st.session_state.years
        self.abstract = st.session_state.abstracts
        self.client = OpenAI(api_key = openai_key)
        self.embed_model = "text-embedding-3-small"
        self.dataset = arxiv_corpus
        self.kws = st.session_state.kws
        
        self.weight_citation = weight_citation
        self.weight_date = weight_date
        self.weight_keywords = weight_keywords
        self.id_to_index = {self.ids[i]: i for i in range(len(self.ids))}

        # self.citation_filter = CitationFilter(self.dataset)
        # self.date_filter = DateFilter(self.dataset['date'])
        self.keyword_filter = KeywordFilter(corpus=self.dataset, remove_capitals=True)

    def parse_date(self, id):
        # indexval = np.where(self.ids == id)[0][0]
        indexval = id
        return self.years[indexval]

    def make_embedding(self, text):
        str_embed = self.client.embeddings.create(input = [text], model = self.embed_model).data[0].embedding
        return str_embed

    def embed_batch(self, texts: List[str]) -> List[np.ndarray]:
        embeddings = self.client.embeddings.create(input=texts, model=self.embed_model).data
        return [np.array(embedding.embedding, dtype=np.float32) for embedding in embeddings]

    def init_filters(self):

        self.citation_filter = []
        self.date_filter = []
        self.keyword_filter = []

    def get_query_embedding(self, query):
        return self.make_embedding(query)

    def analyze_temporal_query(self, query):
        return

    def calc_faiss(self, query_embedding, top_k = 100):
        # xq = query_embedding.reshape(-1,1).T.astype('float32')
        # D, I = self.index.search(xq, top_k)
        # return I[0], D[0]
        tmp = self.dataset.search('embed',query_embedding, k=top_k)
        return [tmp.indices, tmp.scores]
        
    def rank_and_filter(self, query, query_embedding, query_date, top_k = 10, return_scores=False, time_result=None):

        
        topk_indices, similarities = self.calc_faiss(np.array(query_embedding), top_k = 300)

        if self.weight_keywords: 
            keyword_matches = self.keyword_filter.filter(query)
            kw_indices = np.zeros_like(similarities)
            for s in keyword_matches:
                if self.id_to_index[s] in topk_indices:
                    # print('yes', self.id_to_index[s], topk_indices[np.where(topk_indices == self.id_to_index[s])[0]])
                    similarities[np.where(topk_indices == self.id_to_index[s])[0]] = similarities[np.where(topk_indices == self.id_to_index[s])[0]] * 10.
            similarities = similarities / 10.                    

        filtered_results = [[topk_indices[i], similarities[i]] for i in range(len(similarities))]
        top_results = sorted(filtered_results, key=lambda x: x[1], reverse=True)[:top_k]

        if return_scores:
            return {doc[0]: doc[1] for doc in top_results}

        # Only keep the document IDs
        top_results = [doc[0] for doc in top_results]
        return top_results        
    
    def retrieve(self, query, top_k, time_result=None, query_date = None, return_scores = False):

        query_embedding = self.get_query_embedding(query)

        # Judge time relevance
        if time_result is None:
            if self.weight_date: 
                time_result, time_taken = self.analyze_temporal_query(query, self.anthropic_client)
            else: 
                time_result = {'has_temporal_aspect': False, 'expected_year_filter': None, 'expected_recency_weight': None}

        top_results = self.rank_and_filter(query, 
                                           query_embedding, 
                                           query_date, 
                                           top_k, 
                                           return_scores = return_scores, 
                                           time_result = time_result)
        
        return top_results

class HydeRetrievalSystem(EmbeddingRetrievalSystem):
    def __init__(self, generation_model: str = "claude-3-haiku-20240307", 
                 embedding_model: str = "text-embedding-3-small", 
             temperature: float = 0.5, 
                 max_doclen: int = 500, 
                 generate_n: int = 1, 
                 embed_query = True, 
                 conclusion = False, **kwargs):
    
        # Handle the kwargs for the superclass init -- filters/citation weighting
        super().__init__(**kwargs)
        
        if max_doclen * generate_n > 8191:
            raise ValueError("Too many tokens. Please reduce max_doclen or generate_n.")
        
        self.embedding_model = embedding_model
        self.generation_model = generation_model

        # HYPERPARAMETERS
        self.temperature = temperature # generation temperature
        self.max_doclen = max_doclen # max tokens for generation
        self.generate_n = generate_n # how many documents
        self.embed_query = embed_query # embed the query vector?
        self.conclusion = conclusion # generate conclusion as well?

        self.anthropic_key = anthropic_key
        self.generation_client = anthropic.Anthropic(api_key = self.anthropic_key)
    
    def retrieve(self, query: str, top_k: int = 10, return_scores = False, time_result = None) -> List[Tuple[str, str, float]]:
        if time_result is None:
            if self.weight_date: time_result, time_taken = analyze_temporal_query(query, self.anthropic_client)
            else: time_result = {'has_temporal_aspect': False, 'expected_year_filter': None, 'expected_recency_weight': None}

        docs = self.generate_docs(query)
        doc_embeddings = self.embed_docs(docs)

        if self.embed_query: 
            query_emb = self.embed_docs([query])[0]
            doc_embeddings.append(query_emb)
        
        embedding = np.mean(np.array(doc_embeddings), axis = 0)

        top_results = self.rank_and_filter(query, embedding, query_date=None, top_k = top_k, return_scores = return_scores, time_result = time_result)
        
        return top_results

    def generate_doc(self, query: str):
        prompt = """You are an expert astronomer. Given a scientific query, generate the abstract"""
        if self.conclusion: 
            prompt += " and conclusion"
        prompt += """ of an expert-level research paper
                            that answers the question. Stick to a maximum length of {} tokens and return just the text of the abstract and conclusion.
                            Do not include labels for any section. Use research-specific jargon.""".format(self.max_doclen)
                

        message = self.generation_client.messages.create(
                model = self.generation_model,
                max_tokens = self.max_doclen,
                temperature = self.temperature,
                system = prompt,
                messages=[{ "role": "user",
                        "content": [{"type": "text", "text": query,}] }]
            )

        return message.content[0].text
    
    def generate_docs(self, query: str):
        docs = []
        with concurrent.futures.ThreadPoolExecutor() as executor:
            future_to_query = {executor.submit(self.generate_doc, query): query for i in range(self.generate_n)}
            for future in concurrent.futures.as_completed(future_to_query):
                query = future_to_query[future]
                try:
                    data = future.result()
                    docs.append(data)
                except Exception as exc:
                    pass
        return docs

    def embed_docs(self, docs: List[str]):
        return self.embed_batch(docs)

class HydeCohereRetrievalSystem(HydeRetrievalSystem):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        self.cohere_key = "Of1MjzFjGmvzBAqdvNHTQLkAjecPcOKpiIPAnFMn"
        self.cohere_client = cohere.Client(self.cohere_key)

    def retrieve(self, query: str, 
                 top_k: int = 10, 
                 rerank_top_k: int = 250,
                 return_scores = False, time_result = None,
                 reweight = False) -> List[Tuple[str, str, float]]:
        
        if time_result is None:
            if self.weight_date: time_result, time_taken = analyze_temporal_query(query, self.anthropic_client)
            else: time_result = {'has_temporal_aspect': False, 'expected_year_filter': None, 'expected_recency_weight': None}
        
        top_results = super().retrieve(query, top_k = rerank_top_k, time_result = time_result)
        
        # doc_texts = self.get_document_texts(top_results)
        # docs_for_rerank = [f"Abstract: {doc['abstract']}\nConclusions: {doc['conclusions']}" for doc in doc_texts]
        docs_for_rerank = [self.abstract[i] for i in top_results]
        
        if len(docs_for_rerank) == 0:
            return []
        
        reranked_results = self.cohere_client.rerank(
            query=query,
            documents=docs_for_rerank,
            model='rerank-english-v3.0',
            top_n=top_k
        )
        
        final_results = []
        for result in reranked_results.results:
            doc_id = top_results[result.index]
            doc_text = docs_for_rerank[result.index]
            score = float(result.relevance_score)
            final_results.append([doc_id, "", score])

        if reweight:
            if time_result['has_temporal_aspect']:
                final_results = self.date_filter.filter(final_results, time_score = time_result['expected_recency_weight'])
            
            if self.weight_citation: self.citation_filter.filter(final_results)
        
        if return_scores:
            return {result[0]: result[2] for result in final_results}

        return [doc[0] for doc in final_results]

    def embed_docs(self, docs: List[str]):
        return self.embed_batch(docs)

# ----------------------------------------------------------------
    
    
if 'ec' not in st.session_state:
    ec = EmbeddingRetrievalSystem(weight_keywords=True)
    st.session_state.ec = ec
    st.toast('loaded retrieval system')
else:
    ec = st.session_state.ec
    
    
    
# Function to simulate question answering (replace with actual implementation)
def answer_question(question, keywords, toggles, method, question_type):
    # Simulated answer (replace with actual logic)
    # return f"Answer to '{question}' using method {method} for {question_type} question."
    return run_ret(question, 10)


def get_papers(ids):
    
    papers, scores, links = [], [], []
    for i in ids:
        papers.append(st.session_state.titles[i])
        scores.append(ids[i])
        links.append('https://ui.adsabs.harvard.edu/abs/'+st.session_state.arxiv_corpus['bibcode'][i]+'/abstract')
    
    return pd.DataFrame({
        'Title': papers,
        'Relevance': scores,
        'Link': links
    })


# Function to create embedding plot (replace with actual implementation)
def create_embedding_plot():
    # Simulated embedding data (replace with actual embedding calculation)
    source = ColumnDataSource(data=dict(
        x=[1, 2, 3, 4, 5],
        y=[6, 7, 2, 4, 5],
        colors=Spectral10[0:5],
        labels=['A', 'B', 'C', 'D', 'E']
    ))
    
    p = figure(width=400, height=400, title="Embedding Map")
    p.circle('x', 'y', size=20, source=source, color='colors', alpha=0.6)
    return p

# Function to simulate keyword extraction (replace with actual implementation)
def extract_keywords(question):
    # Simulated keyword extraction (replace with actual logic)
    return ['keyword1', 'keyword2', 'keyword3']

# Function to estimate consensus (replace with actual implementation)
def estimate_consensus():
    # Simulated consensus estimation (replace with actual calculation)
    return 0.75

def run_ret(query, top_k):
    rs = ec.retrieve(query, top_k, return_scores=True)
    output_str = ''
    for i in rs:
        if rs[i] > 0.5:
            output_str = output_str + '---> ' + st.session_state.titles[i] + '(score: %.2f) \n' %rs[i]
        else:
            output_str = output_str + '---> ' + st.session_state.titles[i] + '(score: %.2f) \n' %rs[i]
    return output_str, rs

# Streamlit app
def main():
    
    # st.title("Question Answering App")

    
    # Sidebar (Inputs)
    st.sidebar.header("Inputs")
    extra_keywords = st.sidebar.text_input("Enter extra keywords (comma-separated):")
    
    st.sidebar.subheader("Toggles")
    toggle_a = st.sidebar.checkbox("Toggle A")
    toggle_b = st.sidebar.checkbox("Toggle B")
    toggle_c = st.sidebar.checkbox("Toggle C")
    
    method = st.sidebar.radio("Choose a method:", ["h1", "h2", "h3"])
    question_type = st.sidebar.selectbox("Select question type:", ["Type 1", "Type 2", "Type 3"])
    # store_output = st.sidebar.checkbox("Store the output")

    
    store_output = st.sidebar.button("Save output")

    # Main page (Outputs)
    
    question = st.text_input("Ask me anything:")
    submit_button = st.button("Submit")
    
    if submit_button:
        # Process inputs
        keywords = [kw.strip() for kw in extra_keywords.split(',')] if extra_keywords else []
        toggles = {'A': toggle_a, 'B': toggle_b, 'C': toggle_c}

        # Generate outputs
        answer, rs = answer_question(question, keywords, toggles, method, question_type)
        papers_df = get_papers(rs)
        embedding_plot = create_embedding_plot()
        triggered_keywords = extract_keywords(question)
        consensus = estimate_consensus()

        # Display outputs        

        st.subheader("Answer")
        st.write(answer)
            
        with st.expander("Papers used", expanded=True):
            st.dataframe(papers_df)

        
        col1, col2 = st.columns(2)
        
        with col1:
            
            st.subheader("Embedding Map")
            st.bokeh_chart(embedding_plot)
            
            st.subheader("Triggered Keywords")
            st.write(", ".join(triggered_keywords))
        
        with col2:
            
            st.subheader("Question Type")
            st.write(question_type)
            
            st.subheader("Consensus Estimate")
            st.write(f"{consensus:.2%}")
            
        # st.subheader("Papers Used")
            # st.dataframe(papers_df)
            
            
        
    else:
        st.info("Use the sidebar to input parameters and submit to see results.")
            
    if store_output:
        st.toast("Output stored successfully!")

if __name__ == "__main__":
    main()