File size: 40,804 Bytes
6931cbb
ea7a22d
6931cbb
ea7a22d
 
 
 
 
4351936
ea7a22d
 
 
6931cbb
ac72d36
ea7a22d
60c8258
157e0ca
 
4351936
 
 
60c8258
 
4351936
 
 
 
 
 
 
60c8258
4351936
 
 
ac72d36
ea7a22d
 
 
4351936
ea7a22d
 
6931cbb
ea7a22d
 
 
6931cbb
ea7a22d
 
 
 
 
 
 
 
 
4351936
ea7a22d
 
157e0ca
 
 
 
4351936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea7a22d
 
 
 
 
 
 
4351936
ea7a22d
 
4351936
ea7a22d
 
 
 
 
 
 
 
 
 
4351936
 
 
ea7a22d
 
 
 
 
 
4351936
 
 
 
ea7a22d
 
4351936
ea7a22d
 
 
136a26b
 
ea7a22d
77b2b2e
ea7a22d
 
ac72d36
 
4351936
ea7a22d
 
 
 
 
 
ac72d36
e2d52cc
 
 
 
ac72d36
4351936
 
60c8258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac72d36
4351936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac72d36
 
 
 
4351936
ac72d36
 
 
 
 
e2d52cc
ac72d36
4351936
 
ac72d36
 
 
 
 
 
 
4351936
ac72d36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4351936
ac72d36
4351936
ac72d36
 
4351936
 
 
 
 
 
 
 
 
 
ac72d36
4351936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac72d36
 
 
 
 
 
 
 
 
4351936
 
ac72d36
 
 
 
 
 
4351936
ac72d36
4351936
ac72d36
 
4351936
 
 
 
 
ac72d36
4351936
ac72d36
 
 
4351936
 
 
 
 
 
ac72d36
4351936
ac72d36
 
4351936
ac72d36
 
4351936
ac72d36
 
 
 
 
 
 
 
 
 
4351936
 
 
 
ac72d36
 
 
 
 
 
4351936
 
ac72d36
 
4351936
ac72d36
 
4351936
ac72d36
 
 
4351936
ac72d36
 
 
4351936
ac72d36
 
4351936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac72d36
 
4351936
 
 
 
 
 
 
 
 
 
 
 
 
 
ac72d36
 
 
 
 
 
 
 
 
4351936
ac72d36
 
4351936
 
ac72d36
 
 
4351936
ac72d36
 
 
4351936
ac72d36
4351936
ac72d36
 
 
4351936
ac72d36
 
4351936
ac72d36
 
 
 
 
 
4351936
ac72d36
 
 
 
 
 
 
 
 
 
4351936
ac72d36
4351936
ac72d36
 
 
 
 
 
 
 
 
4351936
ac72d36
4351936
ac72d36
 
ea7a22d
ac72d36
ea7a22d
4351936
 
 
 
ac72d36
4351936
 
 
 
e2d52cc
4351936
 
 
 
 
 
 
 
e2d52cc
4351936
 
 
 
 
ac72d36
 
 
e2d52cc
 
 
 
4351936
ea7a22d
ac72d36
 
4351936
 
 
 
ea7a22d
 
ac72d36
4351936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
157e0ca
 
4351936
 
 
157e0ca
 
e2d52cc
 
157e0ca
e2d52cc
ea7a22d
4351936
157e0ca
 
4351936
 
 
157e0ca
4351936
157e0ca
 
 
 
 
 
 
 
 
 
4351936
157e0ca
 
 
 
4351936
157e0ca
 
 
4351936
157e0ca
4351936
ea7a22d
6931cbb
4351936
ea7a22d
 
6931cbb
ea7a22d
 
 
 
6931cbb
ac72d36
4351936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60c8258
4351936
 
60c8258
4351936
60c8258
4351936
 
 
60c8258
157e0ca
4351936
 
 
 
157e0ca
4351936
157e0ca
4351936
157e0ca
4351936
60c8258
4351936
 
 
 
 
 
 
 
157e0ca
4351936
60c8258
4351936
 
60c8258
4351936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60c8258
4351936
 
 
60c8258
4351936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
880a607
4351936
 
 
 
 
 
 
 
 
 
 
 
60c8258
 
ea7a22d
 
4351936
ea7a22d
4351936
 
ea7a22d
60c8258
157e0ca
ea7a22d
4351936
ea7a22d
4351936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea7a22d
4351936
ac72d36
ea7a22d
 
4351936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60c8258
ac72d36
4351936
ea7a22d
4351936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60c8258
157e0ca
 
4351936
157e0ca
ac72d36
e2d52cc
 
4351936
ea7a22d
4351936
ea7a22d
4351936
 
 
 
 
 
 
 
 
 
ea7a22d
4351936
 
 
 
 
 
 
 
 
 
 
ea7a22d
4351936
 
ac72d36
 
6931cbb
ea7a22d
4351936
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
import streamlit as st
st.set_page_config(layout="wide")

import numpy as np
from abc import ABC, abstractmethod
from typing import List, Dict, Any, Tuple
from collections import defaultdict
from tqdm import tqdm
import pandas as pd
from datetime import datetime, date
from datasets import load_dataset, load_from_disk
from collections import Counter

import yaml, json, requests, sys, os, time
import concurrent.futures

from langchain import hub
from langchain_openai import ChatOpenAI as openai_llm
from langchain_openai import OpenAIEmbeddings
from langchain_core.runnables import RunnableConfig, RunnablePassthrough, RunnableParallel
from langchain_core.prompts import PromptTemplate
from langchain_community.callbacks import StreamlitCallbackHandler
from langchain_community.utilities import DuckDuckGoSearchAPIWrapper
from langchain_community.vectorstores import Chroma
from langchain_community.document_loaders import TextLoader
from langchain.agents import create_react_agent, Tool, AgentExecutor
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.output_parsers import StrOutputParser
from langchain.callbacks import FileCallbackHandler
from langchain.callbacks.manager import CallbackManager

import instructor
from pydantic import BaseModel, Field
from typing import List, Literal

from nltk.corpus import stopwords
import nltk
from openai import OpenAI
# import anthropic
import cohere
import faiss

import spacy
from string import punctuation
import pytextrank

nlp = spacy.load("en_core_web_sm")
nlp.add_pipe("textrank")

try:
    stopwords.words('english')
except:
    nltk.download('stopwords')
    stopwords.words('english')


from bokeh.plotting import figure
from bokeh.models import ColumnDataSource
from bokeh.io import output_notebook
from bokeh.palettes import Spectral5
from bokeh.transform import linear_cmap

ts = time.time()


# anthropic_key = st.secrets["anthropic_key"]
openai_key = st.secrets["openai_key"]
cohere_key = st.secrets['cohere_key']

gen_llm = openai_llm(temperature=0,model_name='gpt-4o-mini', openai_api_key = openai_key)
consensus_client = instructor.patch(OpenAI(api_key=openai_key))

embed_client = OpenAI(api_key = openai_key)
embed_model = "text-embedding-3-small"
embeddings = OpenAIEmbeddings(model = embed_model, api_key = openai_key)



st.image('local_files/pathfinder_logo.png')

st.expander("About", expanded=False).write(
        """
        Pathfinder v2.0 is a framework for searching and visualizing astronomy papers on the [arXiv](https://arxiv.org/) and [ADS](https://ui.adsabs.harvard.edu/) using the context
        sensitivity from modern large language models (LLMs) to better parse patterns in paper contexts.

        This tool was built during the [JSALT workshop](https://www.clsp.jhu.edu/2024-jelinek-summer-workshop-on-speech-and-language-technology/) to do awesome things.

        **👈 Use the sidebar to tweak the search parameters to get better results**.

        ### Tool summary:
        - Please wait while the initial data loads and compiles, this takes about a minute initially.

        This is not meant to be a replacement to existing tools like the
        [ADS](https://ui.adsabs.harvard.edu/),
        [arxivsorter](https://www.arxivsorter.org/), semantic search or google scholar, but rather a supplement to find papers
        that otherwise might be missed during a literature survey.
        It is trained on astro-ph (astrophysics of galaxies) papers up to last-year-ish mined from arxiv and supplemented with ADS metadata,
        if you are interested in extending it please reach out!


        Also add: feedback form, socials, literature, contact us, copyright, collaboration, etc.

        The image below shows a representation of all the astro-ph.GA papers that can be explored in more detail
        using the `Arxiv embedding` page. The papers tend to cluster together by similarity, and result in an
        atlas that shows well studied (forests) and currently uncharted areas (water).
        """
    )


# ---------------- get data and set up session state ---------------------------

if 'arxiv_corpus' not in st.session_state:
    with st.spinner('loading data...'):
        try:
            arxiv_corpus = load_from_disk('data/')
        except:
            st.write('downloading data')
            arxiv_corpus = load_dataset('kiyer/pathfinder_arxiv_data',split='train')
            # arxiv_corpus = load_dataset('kiyer/pathfinder_arxiv_data_galaxy',split='train')
            arxiv_corpus.save_to_disk('data/')
        arxiv_corpus.add_faiss_index('embed')
        st.session_state.arxiv_corpus = arxiv_corpus
        st.toast('loaded arxiv corpus')
else:
    arxiv_corpus = st.session_state.arxiv_corpus

if 'ids' not in st.session_state:
    st.session_state.ids = arxiv_corpus['ads_id']
    st.session_state.titles = arxiv_corpus['title']
    st.session_state.abstracts = arxiv_corpus['abstract']
    st.session_state.cites = arxiv_corpus['cites']
    st.session_state.years = arxiv_corpus['date']
    st.session_state.kws = arxiv_corpus['keywords']
    st.session_state.ads_kws = arxiv_corpus['ads_keywords']
    st.session_state.bibcode = arxiv_corpus['bibcode']
    st.session_state.umap_x = arxiv_corpus['umap_x']
    st.session_state.umap_y = arxiv_corpus['umap_y']
    st.toast('done caching. time taken: %.2f sec' %(time.time()-ts))


#---------------------------------------------------------------

# A hack to "clear" the previous result when submitting a new prompt. This avoids
# the "previous run's text is grayed-out but visible during rerun" Streamlit behavior.
class DirtyState:
    NOT_DIRTY = "NOT_DIRTY"
    DIRTY = "DIRTY"
    UNHANDLED_SUBMIT = "UNHANDLED_SUBMIT"

def get_dirty_state() -> str:
    return st.session_state.get("dirty_state", DirtyState.NOT_DIRTY)

def set_dirty_state(state: str) -> None:
    st.session_state["dirty_state"] = state

def with_clear_container(submit_clicked: bool) -> bool:
    if get_dirty_state() == DirtyState.DIRTY:
        if submit_clicked:
            set_dirty_state(DirtyState.UNHANDLED_SUBMIT)
            st.experimental_rerun()
        else:
            set_dirty_state(DirtyState.NOT_DIRTY)

    if submit_clicked or get_dirty_state() == DirtyState.UNHANDLED_SUBMIT:
        set_dirty_state(DirtyState.DIRTY)
        return True

    return False

# ---------------- define embedding retrieval systems --------------------------

def get_keywords(text):
    result = []
    pos_tag = ['PROPN', 'ADJ', 'NOUN']
    doc = nlp(text.lower())
    for token in doc:
        if(token.text in nlp.Defaults.stop_words or token.text in punctuation):
            continue
        if(token.pos_ in pos_tag):
            result.append(token.text)
    return result

def parse_doc(text, nret = 10):
    local_kws = []
    doc = nlp(text)
    # examine the top-ranked phrases in the document
    for phrase in doc._.phrases[:nret]:
        # print(phrase.text)
        local_kws.append(phrase.text)
    return local_kws

class EmbeddingRetrievalSystem():

    def __init__(self, weight_citation = False, weight_date = False, weight_keywords = False):

        self.ids = st.session_state.ids
        self.years = st.session_state.years
        self.abstract = st.session_state.abstracts
        self.client = OpenAI(api_key = openai_key)
        self.embed_model = "text-embedding-3-small"
        self.dataset = st.session_state.arxiv_corpus
        self.kws = st.session_state.kws
        self.cites = st.session_state.cites

        self.weight_citation = weight_citation
        self.weight_date = weight_date
        self.weight_keywords = weight_keywords
        self.id_to_index = {self.ids[i]: i for i in range(len(self.ids))}

        # self.citation_filter = CitationFilter(self.dataset)
        # self.date_filter = DateFilter(self.dataset['date'])
        # self.keyword_filter = KeywordFilter(corpus=self.dataset, remove_capitals=True)

    def parse_date(self, id):
        # indexval = np.where(self.ids == id)[0][0]
        indexval = id
        return self.years[indexval]

    def make_embedding(self, text):
        str_embed = self.client.embeddings.create(input = [text], model = self.embed_model).data[0].embedding
        return str_embed

    def embed_batch(self, texts: List[str]) -> List[np.ndarray]:
        embeddings = self.client.embeddings.create(input=texts, model=self.embed_model).data
        return [np.array(embedding.embedding, dtype=np.float32) for embedding in embeddings]

    def get_query_embedding(self, query):
        return self.make_embedding(query)

    def analyze_temporal_query(self, query):
        return

    def calc_faiss(self, query_embedding, top_k = 100):
        # xq = query_embedding.reshape(-1,1).T.astype('float32')
        # D, I = self.index.search(xq, top_k)
        # return I[0], D[0]
        tmp = self.dataset.search('embed', query_embedding, k=top_k)
        return [tmp.indices, tmp.scores]

    def rank_and_filter(self, query, query_embedding, query_date, top_k = 10, return_scores=False, time_result=None):

        # st.write('status')

        # st.write('toggles', self.toggles)
        # st.write('question_type', self.question_type)
        # st.write('rag method', self.rag_method)
        # st.write('gen method', self.gen_method)

        self.weight_keywords = self.toggles["Keyword weighting"]
        self.weight_date = self.toggles["Time weighting"]
        self.weight_citation = self.toggles["Citation weighting"]

        topk_indices, similarities = self.calc_faiss(np.array(query_embedding), top_k = 1000)
        similarities = 1/similarities # converting from a distance (less is better) to a similarity (more is better)

        query_kws = get_keywords(query)
        input_kws = self.query_input_keywords
        query_kws = query_kws + input_kws
        self.query_kws = query_kws

        if self.weight_keywords == True:
            sub_kws = [self.kws[i] for i in topk_indices]
            kw_weight = np.zeros((len(topk_indices),)) + 0.1

            for k in query_kws:
                for i in (range(len(topk_indices))):
                    for j in range(len(sub_kws[i])):
                        if k.lower() in sub_kws[i][j].lower():
                            kw_weight[i] = kw_weight[i] + 0.1
                            # print(i, k, sub_kws[i][j])

            # kw_weight = kw_weight**0.36 / np.amax(kw_weight**0.36)
            kw_weight = kw_weight / np.amax(kw_weight)
        else:
            kw_weight = np.ones((len(topk_indices),))

        if self.weight_date == True:
            sub_dates = [self.years[i] for i in topk_indices]
            date = datetime.now().date()
            date_diff = np.array([((date - i).days / 365.) for i in sub_dates])
            # age_weight = (1 + np.exp(date_diff/2.1))**(-1) + 0.5
            age_weight = (1 + np.exp(date_diff/0.7))**(-1)
            age_weight = age_weight / np.amax(age_weight)
        else:
            age_weight = np.ones((len(topk_indices),))

        if self.weight_citation == True:
            # st.write('weighting by citations')
            sub_cites = np.array([self.cites[i] for i in topk_indices])
            temp = sub_cites.copy()
            temp[sub_cites > 300] = 300.
            cite_weight = (1 + np.exp((300-temp)/42.0))**(-1.)
            cite_weight = cite_weight / np.amax(cite_weight)
        else:
            cite_weight = np.ones((len(topk_indices),))

        similarities = similarities * (kw_weight) * (age_weight) * (cite_weight)

        # if self.weight_keywords:
        #     keyword_matches = self.keyword_filter.filter(query)
        #     self.query_kws = keyword_matches
        #     kw_indices = np.zeros_like(similarities)
        #     for s in keyword_matches:
        #         if self.id_to_index[s] in topk_indices:
        #             # print('yes', self.id_to_index[s], topk_indices[np.where(topk_indices == self.id_to_index[s])[0]])
        #             similarities[np.where(topk_indices == self.id_to_index[s])[0]] = similarities[np.where(topk_indices == self.id_to_index[s])[0]] * 10.
        #     similarities = similarities / 10.

        filtered_results = [[topk_indices[i], similarities[i]] for i in range(len(similarities))]
        top_results = sorted(filtered_results, key=lambda x: x[1], reverse=True)[:top_k]

        if return_scores:
            return {doc[0]: doc[1] for doc in top_results}

        # Only keep the document IDs
        top_results = [doc[0] for doc in top_results]
        return top_results

    def retrieve(self, query, top_k, time_result=None, query_date = None, return_scores = False):

        query_embedding = self.get_query_embedding(query)

        # Judge time relevance
        if time_result is None:
            if self.weight_date:
                time_result, time_taken = self.analyze_temporal_query(query, self.anthropic_client)
            else:
                time_result = {'has_temporal_aspect': False, 'expected_year_filter': None, 'expected_recency_weight': None}

        top_results = self.rank_and_filter(query,
                                           query_embedding,
                                           query_date,
                                           top_k,
                                           return_scores = return_scores,
                                           time_result = time_result)

        return top_results

class HydeRetrievalSystem(EmbeddingRetrievalSystem):
    def __init__(self, generation_model: str = "claude-3-haiku-20240307",
                 embedding_model: str = "text-embedding-3-small",
             temperature: float = 0.5,
                 max_doclen: int = 500,
                 generate_n: int = 1,
                 embed_query = True,
                 conclusion = False, **kwargs):

        # Handle the kwargs for the superclass init -- filters/citation weighting
        super().__init__(**kwargs)

        if max_doclen * generate_n > 8191:
            raise ValueError("Too many tokens. Please reduce max_doclen or generate_n.")

        self.embedding_model = embedding_model
        self.generation_model = generation_model

        # HYPERPARAMETERS
        self.temperature = temperature # generation temperature
        self.max_doclen = max_doclen # max tokens for generation
        self.generate_n = generate_n # how many documents
        self.embed_query = embed_query # embed the query vector?
        self.conclusion = conclusion # generate conclusion as well?

        # self.anthropic_key = anthropic_key
        # self.generation_client = anthropic.Anthropic(api_key = self.anthropic_key)
        self.generation_client = openai_llm(temperature=0,model_name='gpt-4o-mini', openai_api_key = openai_key)

    def retrieve(self, query: str, top_k: int = 10, return_scores = False, time_result = None) -> List[Tuple[str, str, float]]:
        if time_result is None:
            if self.weight_date: time_result, time_taken = analyze_temporal_query(query, self.anthropic_client)
            else: time_result = {'has_temporal_aspect': False, 'expected_year_filter': None, 'expected_recency_weight': None}

        docs = self.generate_docs(query)
        st.expander('Abstract generated with hyde', expanded=False).write(docs)

        doc_embeddings = self.embed_docs(docs)

        if self.embed_query:
            query_emb = self.embed_docs([query])[0]
            doc_embeddings.append(query_emb)

        embedding = np.mean(np.array(doc_embeddings), axis = 0)

        top_results = self.rank_and_filter(query, embedding, query_date=None, top_k = top_k, return_scores = return_scores, time_result = time_result)

        return top_results

    def generate_doc(self, query: str):
        prompt = """You are an expert astronomer. Given a scientific query, generate the abstract of an expert-level research paper
                            that answers the question. Stick to a maximum length of {} tokens and return just the text of the abstract and conclusion.
                            Do not include labels for any section. Use research-specific jargon.""".format(self.max_doclen)
        # st.write('invoking hyde generation')

        # message = self.generation_client.messages.create(
        #         model = self.generation_model,
        #         max_tokens = self.max_doclen,
        #         temperature = self.temperature,
        #         system = prompt,
        #         messages=[{ "role": "user",
        #                 "content": [{"type": "text", "text": query,}] }]
        #     )
        # return message.content[0].text

        messages = [("system",prompt,),("human", query),]
        return self.generation_client.invoke(messages).content



    def generate_docs(self, query: str):
        docs = []
        for i in range(self.generate_n):
            # st.write('invoking hyde generation2')

            docs.append(self.generate_doc(query))
        # with concurrent.futures.ThreadPoolExecutor() as executor:
        #     st.write('invoking hyde generation2')
        #     future_to_query = {executor.submit(self.generate_doc, query): query for i in range(self.generate_n)}
        #     for future in concurrent.futures.as_completed(future_to_query):
        #         query = future_to_query[future]
        #         try:
        #             data = future.result()
        #             docs.append(data)
        #         except Exception as exc:
        #             pass
        return docs

    def embed_docs(self, docs: List[str]):
        return self.embed_batch(docs)

class HydeCohereRetrievalSystem(HydeRetrievalSystem):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        self.cohere_key = cohere_key
        self.cohere_client = cohere.Client(self.cohere_key)

    def retrieve(self, query: str,
                 top_k: int = 10,
                 rerank_top_k: int = 250,
                 return_scores = False, time_result = None,
                 reweight = False) -> List[Tuple[str, str, float]]:

        if time_result is None:
            if self.weight_date: time_result, time_taken = analyze_temporal_query(query, self.anthropic_client)
            else: time_result = {'has_temporal_aspect': False, 'expected_year_filter': None, 'expected_recency_weight': None}

        top_results = super().retrieve(query, top_k = rerank_top_k, time_result = time_result)

        # doc_texts = self.get_document_texts(top_results)
        # docs_for_rerank = [f"Abstract: {doc['abstract']}\nConclusions: {doc['conclusions']}" for doc in doc_texts]
        docs_for_rerank = [self.abstract[i] for i in top_results]

        if len(docs_for_rerank) == 0:
            return []

        reranked_results = self.cohere_client.rerank(
            query=query,
            documents=docs_for_rerank,
            model='rerank-english-v3.0',
            top_n=top_k
        )

        final_results = []
        for result in reranked_results.results:
            doc_id = top_results[result.index]
            doc_text = docs_for_rerank[result.index]
            score = float(result.relevance_score)
            final_results.append([doc_id, "", score])

        if reweight:
            if time_result['has_temporal_aspect']:
                final_results = self.date_filter.filter(final_results, time_score = time_result['expected_recency_weight'])

            if self.weight_citation: self.citation_filter.filter(final_results)

        if return_scores:
            return {result[0]: result[2] for result in final_results}

        return [doc[0] for doc in final_results]

    def embed_docs(self, docs: List[str]):
        return self.embed_batch(docs)

# ----------------------------------------------------------------

if 'ec' not in st.session_state:
    ec = HydeCohereRetrievalSystem(weight_keywords=True)
    st.session_state.ec = ec
    st.toast('loaded retrieval system')
else:
    ec = st.session_state.ec

def get_topk(query, top_k):
    print('running retrieval')
    rs = st.session_state.ec.retrieve(query, top_k, return_scores=True)
    return rs

def Library(query, top_k = 7):
    rs = get_topk(query, top_k = top_k)
    op_docs = ''
    for paperno, i in enumerate(rs):
        op_docs = op_docs + 'Paper %.0f:' %(paperno+1) +' (published in '+st.session_state.bibcode[i][0:4] + ') ' + st.session_state.titles[i]  + '\n' + st.session_state.abstracts[i] + '\n\n'

    return op_docs

def Library2(query, top_k = 7):
    rs = get_topk(query, top_k = top_k)
    absts, fnames = [], []
    for paperno, i in enumerate(rs):
        absts.append(st.session_state.abstracts[i])
        fnames.append(st.session_state.bibcode[i])
    return absts, fnames, rs

def get_paper_df(ids):

    papers, scores, yrs, links, cites, kws = [], [], [], [], [], []
    for i in ids:
        papers.append(st.session_state.titles[i])
        scores.append(ids[i])
        links.append('https://ui.adsabs.harvard.edu/abs/'+st.session_state.bibcode[i]+'/abstract')
        yrs.append(st.session_state.bibcode[i][0:4])
        cites.append(st.session_state.cites[i])
        kws.append(st.session_state.ads_kws[i])

    return pd.DataFrame({
        'Title': papers,
        'Relevance': scores,
        'Year': yrs,
        'ADS Link': links,
        'Citations': cites,
        'Keywords': kws,
    })


# def find_outliers(inp_simids, arxiv_cutoff_distance = 0.8):
#
#     inp_simids = np.array(inp_simids)
#
#     # Calculate the centroid for each point, excluding itself
#     orange_black_points = st.session_state.embed[inp_simids]
#
#     topk_dists = []
#     for i, point in enumerate(orange_black_points):
#         # Exclude the current point
#         other_points = np.delete(orange_black_points, i, axis=0)
#         # Calculate centroid of other points
#         centroid = np.mean(other_points, axis=0)
#         # Calculate distance from the point to this centroid
#         dist = np.sqrt(np.sum((point - centroid)**2))
#         topk_dists.append(dist)
#
#     topk_dists = np.array(topk_dists)
#
#     # Separate distances for orange and black points
#     orange_distances = topk_dists[:len(inp_simids)]
#     black_distances = topk_dists[len(inp_simids):]
#
#     # Calculate the median of distances
#     orange_black_distances = topk_dists
#     median_topk_distance = np.median(orange_black_distances)
#
#     # def get_sims_and_dists(inp_data):
#
#     #     all_sims, all_dists = [], []
#
#     #     np.random.seed(12)
#     #     rand_indices = np.random.choice(inp_data.shape[0], size=return_n, replace=False)
#
#     #     for j in tqdm(range(len(rand_indices))):
#
#     #         i = rand_indices[j]
#     #         inferred_vector = inp_data[i,:]
#     #         sims, dists = find_closest_dists(i, inp_data, return_n + 1)
#     #         all_sims.append(sims[1:])
#     #         all_dists.append(dists[1:])
#
#     #     return np.array(all_sims), np.array(all_dists)
#
#     # # Identify papers with distances greater than the 95th percentile
#     # _, all_dists = get_sims_and_dists(arxiv_ada_embeddings)
#     # arxiv_cutoff_distance = find_cutoff_dist(all_dists)
#     # hardcoding for now
#     outlier_indices = inp_simids[np.where(orange_black_distances > arxiv_cutoff_distance)[0]]
#     # outlier_titles = [titles[i] for i in outlier_indices]
#
#     return outlier_indices #, outlier_titles

def create_embedding_plot(rs):
    """
    function to create embedding plot
    """

    pltsource = ColumnDataSource(data=dict(
        x=st.session_state.umap_x,
        y=st.session_state.umap_y,
        title=st.session_state.titles,
        link=st.session_state.bibcode,
    ))

    rsflag = np.zeros((len(st.session_state.ids),))
    rsflag[np.array([k for k in rs])] = 1

    # outflag = np.zeros((len(st.session_state.ids),))
    # outflag[np.array([k for k in find_outliers(rs)])] = 1
    pltsource.data['colors'] = rsflag * 0.8 + 0.1
    # pltsource.data['colors'][outflag] = 0.5
    pltsource.data['sizes'] = (rsflag + 1)**5 / 100

    TOOLTIPS = """
    <div style="width:300px;">
    ID: $index
    ($x, $y)
    @title <br>
    @link <br> <br>
    </div>
    """

    mapper = linear_cmap(field_name="colors", palette=Spectral5, low=0., high=1.)

    p = figure(width=700, height=900, tooltips=TOOLTIPS, x_range=(0, 20), y_range=(-4.2,18),
            title="UMAP projection of embeddings for the astro-ph corpus")

    p.axis.visible=False
    p.grid.visible=False
    p.outline_line_alpha = 0.

    p.circle('x', 'y', radius='sizes', source=pltsource, alpha=0.3, fill_color=mapper, fill_alpha='colors', line_color="lightgrey",line_alpha=0.1)

    return p

def extract_keywords(question, ec):
    # Simulated keyword extraction (replace with actual logic)
    return ['keyword1', 'keyword2', 'keyword3']

# Function to estimate consensus (replace with actual implementation)
def estimate_consensus():
    # Simulated consensus estimation (replace with actual calculation)
    return 0.75


def run_agent_qa(query, top_k):

    # define tools
    search = DuckDuckGoSearchAPIWrapper()
    tools = [
        Tool(
            name="Library",
            func=Library,
            description="A source of information pertinent to your question. Do not answer a question without consulting this!"
        ),
        Tool(
            name="Search",
            func=search.run,
            description="useful for when you need to look up knowledge about common topics or current events",
        )
    ]

    if 'tools' not in st.session_state:
        st.session_state.tools = tools

    # define prompt

    # for another question type:
    # First, find the quotes from the document that are most relevant to answering the question, and then print them in numbered order.
    # Quotes should be relatively short. If there are no relevant quotes, write “No relevant quotes” instead.


    template = """You are an expert astronomer and cosmologist.
    Answer the following question as best you can using information from the library, but speaking in a concise and factual manner.
    If you can not come up with an answer, say you do not know.
    Try to break the question down into smaller steps and solve it in a logical manner.

    You have access to the following tools:

    {tools}

    Use the following format:

    Question: the input question you must answer
    Thought: you should always think about what to do
    Action: the action to take, should be one of [{tool_names}]
    Action Input: the input to the action
    Observation: the result of the action
    ... (this Thought/Action/Action Input/Observation can repeat N times)
    Thought: I now know the final answer
    Final Answer: the final answer to the original input question. provide information about how you arrived at the answer, and any nuances or uncertainties the reader should be aware of

    Begin! Remember to speak in a pedagogical and factual manner."

    Question: {input}
    Thought:{agent_scratchpad}"""

    prompt = hub.pull("hwchase17/react")
    prompt.template=template

    # path to write intermediate trace to

    file_path = "agent_trace.txt"
    try:
        os.remove(file_path)
    except:
        pass
    file_handler = FileCallbackHandler(file_path)
    callback_manager=CallbackManager([file_handler])

    # define and execute agent

    tool_names = [tool.name for tool in st.session_state.tools]
    if 'agent' not in st.session_state:
        # agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names)
        agent = create_react_agent(llm=gen_llm, tools=tools, prompt=prompt)
        st.session_state.agent = agent

    if 'agent_executor' not in st.session_state:
        agent_executor = AgentExecutor(agent=st.session_state.agent, tools=st.session_state.tools, verbose=True, handle_parsing_errors=True, callbacks=CallbackManager([file_handler]))
        st.session_state.agent_executor = agent_executor

    answer = st.session_state.agent_executor.invoke({"input": query,})
    return answer

def make_rag_qa_answer(query, top_k = 10):

    absts, fhdrs, rs = Library2(query, top_k = top_k)

    temp_abst = ''
    loaders = []
    for i in range(len(absts)):
        temp_abst = absts[i]

        try:
            text_file = open("absts/"+fhdrs[i]+".txt", "w")
        except:
            os.mkdir('absts')
            text_file = open("absts/"+fhdrs[i]+".txt", "w")
        n = text_file.write(temp_abst)
        text_file.close()
        loader = TextLoader("absts/"+fhdrs[i]+".txt")
        loaders.append(loader)

    text_splitter = RecursiveCharacterTextSplitter(chunk_size=150, chunk_overlap=50, add_start_index=True)

    splits = text_splitter.split_documents([loader.load()[0] for loader in loaders])
    vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings, collection_name='retdoc4')
    # retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 6,  "fetch_k": len(splits)})
    retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 6})

    for i in range(len(absts)):
        os.remove("absts/"+fhdrs[i]+".txt")

    template = """You are an expert astronomer and cosmologist.
    Answer the following question as best you can using information from the library, but speaking in a concise and factual manner.
    If you can not come up with an answer, say you do not know.
    Try to break the question down into smaller steps and solve it in a logical manner.

    Provide information about how you arrived at the answer, and any nuances or uncertainties the reader should be aware of.

    Begin! Remember to speak in a pedagogical and factual manner."

    Relevant documents:{context}

    Question: {question}
    Answer:"""
    prompt = PromptTemplate.from_template(template)

    def format_docs(docs):
        return "\n\n".join(doc.page_content for doc in docs)


    rag_chain_from_docs = (
        RunnablePassthrough.assign(context=(lambda x: format_docs(x["context"])))
        | prompt
        | gen_llm
        | StrOutputParser()
    )

    rag_chain_with_source = RunnableParallel(
        {"context": retriever, "question": RunnablePassthrough()}
    ).assign(answer=rag_chain_from_docs)

    rag_answer = rag_chain_with_source.invoke(query, )

    vectorstore.delete_collection()
    return rag_answer, rs

def guess_question_type(query: str):
    categorization_prompt = """You are an expert astrophysicist and computer scientist specializing in linguistics and semantics. Your task is to categorize a given query into one of the following categories:

    1. Summarization
    2. Single-paper factual
    3. Multi-paper factual
    4. Named entity recognition
    5. Jargon-specific questions / overloaded words
    6. Time-sensitive
    7. Consensus evaluation
    8. What-ifs and counterfactuals
    9. Compositional

    Analyze the query carefully, considering its content, structure, and implications. Then, determine which of the above categories best fits the query.

    In your analysis, consider the following:
    - Does the query ask for a well-known datapoint or mechanism?
    - Can it be answered by a single paper or does it require multiple sources?
    - Does it involve proper nouns or specific scientific terms?
    - Is it time-dependent or likely to change in the near future?
    - Does it require evaluating consensus across multiple sources?
    - Is it a hypothetical or counterfactual question?
    - Does it need to be broken down into sub-queries (i.e. compositional)?

    After your analysis, categorize the query into one of the nine categories listed above.

    Provide a brief explanation for your categorization, highlighting the key aspects of the query that led to your decision.

    Present your final answer in the following format:

    <categorization>
    Category: [Selected category]
    Explanation: [Your explanation for the categorization]
    </categorization>"""
    # st.write('invoking hyde generation')

    # message = self.generation_client.messages.create(
    #         model = self.generation_model,
    #         max_tokens = self.max_doclen,
    #         temperature = self.temperature,
    #         system = prompt,
    #         messages=[{ "role": "user",
    #                 "content": [{"type": "text", "text": query,}] }]
    #     )
    # return message.content[0].text

    messages = [("system",categorization_prompt,),("human", query),]
    return st.session_state.ec.generation_client.invoke(messages).content


class OverallConsensusEvaluation(BaseModel):
    consensus: Literal["Strong Agreement", "Moderate Agreement", "Weak Agreement", "No Clear Consensus", "Weak Disagreement", "Moderate Disagreement", "Strong Disagreement"] = Field(
        ...,
        description="The overall level of consensus between the query and the abstracts"
    )
    explanation: str = Field(
        ...,
        description="A detailed explanation of the consensus evaluation"
    )
    relevance_score: float = Field(
        ...,
        description="A score from 0 to 1 indicating how relevant the abstracts are to the query overall",
        ge=0,
        le=1
    )

def evaluate_overall_consensus(query: str, abstracts: List[str]) -> OverallConsensusEvaluation:
    """
    Evaluates the overall consensus of the abstracts in relation to the query in a single LLM call.
    """
    prompt = f"""
    Query: {query}

    You will be provided with {len(abstracts)} scientific abstracts. Your task is to:
    1. Evaluate the overall consensus between the query and the abstracts.
    2. Provide a detailed explanation of your consensus evaluation.
    3. Assign an overall relevance score from 0 to 1, where 0 means completely irrelevant and 1 means highly relevant.

    For the consensus evaluation, use one of the following levels:
    Strong Agreement, Moderate Agreement, Weak Agreement, No Clear Consensus, Weak Disagreement, Moderate Disagreement, Strong Disagreement

    Here are the abstracts:

    {' '.join([f"Abstract {i+1}: {abstract}" for i, abstract in enumerate(abstracts)])}

    Provide your evaluation in a structured format.
    """

    response = consensus_client.chat.completions.create(
        model="gpt-4o-mini", # used to be "gpt-4",
        response_model=OverallConsensusEvaluation,
        messages=[
            {"role": "system", "content": """You are an assistant with expertise in astrophysics for question-answering tasks.
            Evaluate the overall consensus of the retrieved scientific abstracts in relation to a given query.
            If you don't know the answer, just say that you don't know.
            Use six sentences maximum and keep the answer concise."""},
            {"role": "user", "content": prompt}
        ],
        temperature=0
    )

    return response


# Streamlit app
def main():

    # st.title("Question Answering App")


    # Sidebar (Inputs)
    st.sidebar.header("Fine-tune the search")
    top_k = st.sidebar.slider("Number of papers to retrieve:", 3, 30, 10)
    extra_keywords = st.sidebar.text_input("Enter extra keywords (comma-separated):")

    st.sidebar.subheader("Toggles")
    toggle_a = st.sidebar.toggle("Weight by keywords", value = False)
    toggle_b = st.sidebar.toggle("Weight by date", value = False)
    toggle_c = st.sidebar.toggle("Weight by citations", value = False)

    method = st.sidebar.radio("Retrieval method:", ["Semantic search", "Semantic search + HyDE", "Semantic search + HyDE + CoHERE"], index=2)
    if (method == "Semantic search"):
        with st.spinner('set retrieval method to'+ method):
            st.session_state.ec = EmbeddingRetrievalSystem(weight_keywords=True)
    elif (method == "Semantic search + HyDE"):
        with st.spinner('set retrieval method to'+ method):
            st.session_state.ec = HydeRetrievalSystem(weight_keywords=True)
    elif (method == "Semantic search + HyDE + CoHERE"):
        with st.spinner('set retrieval method to'+ method):
            st.session_state.ec = HydeCohereRetrievalSystem(weight_keywords=True)

    method2 = st.sidebar.radio("Generation complexity:", ["Basic RAG","ReAct Agent"])
    if method2 == "Basic RAG":
        st.session_state.gen_method = 'rag'
    elif method2 == "ReAct Agent":
        st.session_state.gen_method = 'agent'


    question_type = st.sidebar.selectbox("Select question type:", ["Single paper", "Multi-paper", "Summary"])
    store_output = st.sidebar.button("Save output")

    # Main page (Outputs)
    # st.markdown("""
    # <style>
    #     .stTextInput > div > div { font-size: 50px; }
    # </style>
    # """, unsafe_allow_html=True)

    # st.markdown(
    #     """
    #     <style>
    #     textarea {
    #         font-size: 3rem !important;
    #         font-weight: bold;
    #         font-family: "Times New Roman", Times, serif;
    #     }
    #     input {
    #         font-size: 3rem !important;
    #         font-weight: bold;
    #         font-family: "Times New Roman", Times, serif;
    #     }
    #     </style>
    #     """,
    #     unsafe_allow_html=True,
    # )
    # query = st.text_area("Ask me anything:", height=30)

    query = st.text_input("Ask me anything:")
    submit_button = st.button("Submit")

    if submit_button:

        search_text_list = ['rooting around in the paper pile...','looking for clarity...','scanning the event horizon...','peering into the abyss...','potatoes power this ongoing search...']

        with st.spinner(search_text_list[np.random.choice(len(search_text_list))]):

            # Process inputs
            keywords = [kw.strip() for kw in extra_keywords.split(',')] if extra_keywords else []
            toggles = {'Keyword weighting': toggle_a, 'Time weighting': toggle_b, 'Citation weighting': toggle_c}
            # Generate outputs

            st.session_state.ec.query_input_keywords = keywords
            st.session_state.ec.toggles = toggles
            st.session_state.ec.question_type = question_type
            st.session_state.ec.rag_method = method
            st.session_state.ec.gen_method = method2

            # Display outputs
            if st.session_state.gen_method == 'agent':
                answer = run_agent_qa(query, top_k)
                rs = get_topk(query, top_k)

                st.write(answer["output"])

                file_path = "agent_trace.txt"
                with open(file_path, 'r') as file:
                    intermediate_steps = file.read()

                st.expander('Intermediate steps', expanded=False).write(intermediate_steps)

            elif st.session_state.gen_method == 'rag':
                answer, rs = make_rag_qa_answer(query, top_k)
                st.write(answer['answer'])

            papers_df = get_paper_df(rs)
            embedding_plot = create_embedding_plot(rs)
            triggered_keywords = st.session_state.ec.query_kws
            st.write('**Triggered keywords:** `'+ "`, `".join(triggered_keywords)+'`')
            # consensus = estimate_consensus()


        with st.expander("Relevant papers", expanded=True):
            # st.dataframe(papers_df, hide_index=True)
            st.data_editor(papers_df,
                           column_config = {'ADS Link':st.column_config.LinkColumn(display_text= 'https://ui.adsabs.harvard.edu/abs/(.*?)/abstract')}
                           )

        # with st.expander("Embedding map", expanded=False):
        st.bokeh_chart(embedding_plot)

        col1, col2 = st.columns(2)

        with col1:

            st.subheader("Question type suggestion")
            question_type_gen = guess_question_type(query)
            if '<categorization>' in question_type_gen:
                question_type_gen = question_type_gen.split('<categorization>')[1]
            if '</categorization>' in question_type_gen:
                question_type_gen = question_type_gen.split('</categorization>')[0]
            question_type_gen = question_type_gen.replace('\n','  \n')
            st.markdown(question_type_gen)

        with col2:

            # st.subheader("Triggered Keywords")
            # st.write(", ".join(triggered_keywords))

            consensus_answer = evaluate_overall_consensus(query, [st.session_state.abstracts[i] for i in rs])
            st.subheader("Consensus: "+consensus_answer.consensus)
            st.markdown(consensus_answer.explanation)
            st.markdown('Relevance of retrieved papers to answer: %.1f' %consensus_answer.relevance_score)

            # st.write(f"{consensus:.2%}")

    else:
        st.info("Use the sidebar to tweak the search parameters to get better results.")

    if store_output:
        st.toast("Output stored successfully!")

if __name__ == "__main__":
    main()