Spaces:
Sleeping
Sleeping
File size: 40,804 Bytes
6931cbb ea7a22d 6931cbb ea7a22d 4351936 ea7a22d 6931cbb ac72d36 ea7a22d 60c8258 157e0ca 4351936 60c8258 4351936 60c8258 4351936 ac72d36 ea7a22d 4351936 ea7a22d 6931cbb ea7a22d 6931cbb ea7a22d 4351936 ea7a22d 157e0ca 4351936 ea7a22d 4351936 ea7a22d 4351936 ea7a22d 4351936 ea7a22d 4351936 ea7a22d 4351936 ea7a22d 136a26b ea7a22d 77b2b2e ea7a22d ac72d36 4351936 ea7a22d ac72d36 e2d52cc ac72d36 4351936 60c8258 ac72d36 4351936 ac72d36 4351936 ac72d36 e2d52cc ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 4351936 ac72d36 ea7a22d ac72d36 ea7a22d 4351936 ac72d36 4351936 e2d52cc 4351936 e2d52cc 4351936 ac72d36 e2d52cc 4351936 ea7a22d ac72d36 4351936 ea7a22d ac72d36 4351936 157e0ca 4351936 157e0ca e2d52cc 157e0ca e2d52cc ea7a22d 4351936 157e0ca 4351936 157e0ca 4351936 157e0ca 4351936 157e0ca 4351936 157e0ca 4351936 157e0ca 4351936 ea7a22d 6931cbb 4351936 ea7a22d 6931cbb ea7a22d 6931cbb ac72d36 4351936 60c8258 4351936 60c8258 4351936 60c8258 4351936 60c8258 157e0ca 4351936 157e0ca 4351936 157e0ca 4351936 157e0ca 4351936 60c8258 4351936 157e0ca 4351936 60c8258 4351936 60c8258 4351936 60c8258 4351936 60c8258 4351936 880a607 4351936 60c8258 ea7a22d 4351936 ea7a22d 4351936 ea7a22d 60c8258 157e0ca ea7a22d 4351936 ea7a22d 4351936 ea7a22d 4351936 ac72d36 ea7a22d 4351936 60c8258 ac72d36 4351936 ea7a22d 4351936 60c8258 157e0ca 4351936 157e0ca ac72d36 e2d52cc 4351936 ea7a22d 4351936 ea7a22d 4351936 ea7a22d 4351936 ea7a22d 4351936 ac72d36 6931cbb ea7a22d 4351936 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 |
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
from abc import ABC, abstractmethod
from typing import List, Dict, Any, Tuple
from collections import defaultdict
from tqdm import tqdm
import pandas as pd
from datetime import datetime, date
from datasets import load_dataset, load_from_disk
from collections import Counter
import yaml, json, requests, sys, os, time
import concurrent.futures
from langchain import hub
from langchain_openai import ChatOpenAI as openai_llm
from langchain_openai import OpenAIEmbeddings
from langchain_core.runnables import RunnableConfig, RunnablePassthrough, RunnableParallel
from langchain_core.prompts import PromptTemplate
from langchain_community.callbacks import StreamlitCallbackHandler
from langchain_community.utilities import DuckDuckGoSearchAPIWrapper
from langchain_community.vectorstores import Chroma
from langchain_community.document_loaders import TextLoader
from langchain.agents import create_react_agent, Tool, AgentExecutor
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.output_parsers import StrOutputParser
from langchain.callbacks import FileCallbackHandler
from langchain.callbacks.manager import CallbackManager
import instructor
from pydantic import BaseModel, Field
from typing import List, Literal
from nltk.corpus import stopwords
import nltk
from openai import OpenAI
# import anthropic
import cohere
import faiss
import spacy
from string import punctuation
import pytextrank
nlp = spacy.load("en_core_web_sm")
nlp.add_pipe("textrank")
try:
stopwords.words('english')
except:
nltk.download('stopwords')
stopwords.words('english')
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource
from bokeh.io import output_notebook
from bokeh.palettes import Spectral5
from bokeh.transform import linear_cmap
ts = time.time()
# anthropic_key = st.secrets["anthropic_key"]
openai_key = st.secrets["openai_key"]
cohere_key = st.secrets['cohere_key']
gen_llm = openai_llm(temperature=0,model_name='gpt-4o-mini', openai_api_key = openai_key)
consensus_client = instructor.patch(OpenAI(api_key=openai_key))
embed_client = OpenAI(api_key = openai_key)
embed_model = "text-embedding-3-small"
embeddings = OpenAIEmbeddings(model = embed_model, api_key = openai_key)
st.image('local_files/pathfinder_logo.png')
st.expander("About", expanded=False).write(
"""
Pathfinder v2.0 is a framework for searching and visualizing astronomy papers on the [arXiv](https://arxiv.org/) and [ADS](https://ui.adsabs.harvard.edu/) using the context
sensitivity from modern large language models (LLMs) to better parse patterns in paper contexts.
This tool was built during the [JSALT workshop](https://www.clsp.jhu.edu/2024-jelinek-summer-workshop-on-speech-and-language-technology/) to do awesome things.
**👈 Use the sidebar to tweak the search parameters to get better results**.
### Tool summary:
- Please wait while the initial data loads and compiles, this takes about a minute initially.
This is not meant to be a replacement to existing tools like the
[ADS](https://ui.adsabs.harvard.edu/),
[arxivsorter](https://www.arxivsorter.org/), semantic search or google scholar, but rather a supplement to find papers
that otherwise might be missed during a literature survey.
It is trained on astro-ph (astrophysics of galaxies) papers up to last-year-ish mined from arxiv and supplemented with ADS metadata,
if you are interested in extending it please reach out!
Also add: feedback form, socials, literature, contact us, copyright, collaboration, etc.
The image below shows a representation of all the astro-ph.GA papers that can be explored in more detail
using the `Arxiv embedding` page. The papers tend to cluster together by similarity, and result in an
atlas that shows well studied (forests) and currently uncharted areas (water).
"""
)
# ---------------- get data and set up session state ---------------------------
if 'arxiv_corpus' not in st.session_state:
with st.spinner('loading data...'):
try:
arxiv_corpus = load_from_disk('data/')
except:
st.write('downloading data')
arxiv_corpus = load_dataset('kiyer/pathfinder_arxiv_data',split='train')
# arxiv_corpus = load_dataset('kiyer/pathfinder_arxiv_data_galaxy',split='train')
arxiv_corpus.save_to_disk('data/')
arxiv_corpus.add_faiss_index('embed')
st.session_state.arxiv_corpus = arxiv_corpus
st.toast('loaded arxiv corpus')
else:
arxiv_corpus = st.session_state.arxiv_corpus
if 'ids' not in st.session_state:
st.session_state.ids = arxiv_corpus['ads_id']
st.session_state.titles = arxiv_corpus['title']
st.session_state.abstracts = arxiv_corpus['abstract']
st.session_state.cites = arxiv_corpus['cites']
st.session_state.years = arxiv_corpus['date']
st.session_state.kws = arxiv_corpus['keywords']
st.session_state.ads_kws = arxiv_corpus['ads_keywords']
st.session_state.bibcode = arxiv_corpus['bibcode']
st.session_state.umap_x = arxiv_corpus['umap_x']
st.session_state.umap_y = arxiv_corpus['umap_y']
st.toast('done caching. time taken: %.2f sec' %(time.time()-ts))
#---------------------------------------------------------------
# A hack to "clear" the previous result when submitting a new prompt. This avoids
# the "previous run's text is grayed-out but visible during rerun" Streamlit behavior.
class DirtyState:
NOT_DIRTY = "NOT_DIRTY"
DIRTY = "DIRTY"
UNHANDLED_SUBMIT = "UNHANDLED_SUBMIT"
def get_dirty_state() -> str:
return st.session_state.get("dirty_state", DirtyState.NOT_DIRTY)
def set_dirty_state(state: str) -> None:
st.session_state["dirty_state"] = state
def with_clear_container(submit_clicked: bool) -> bool:
if get_dirty_state() == DirtyState.DIRTY:
if submit_clicked:
set_dirty_state(DirtyState.UNHANDLED_SUBMIT)
st.experimental_rerun()
else:
set_dirty_state(DirtyState.NOT_DIRTY)
if submit_clicked or get_dirty_state() == DirtyState.UNHANDLED_SUBMIT:
set_dirty_state(DirtyState.DIRTY)
return True
return False
# ---------------- define embedding retrieval systems --------------------------
def get_keywords(text):
result = []
pos_tag = ['PROPN', 'ADJ', 'NOUN']
doc = nlp(text.lower())
for token in doc:
if(token.text in nlp.Defaults.stop_words or token.text in punctuation):
continue
if(token.pos_ in pos_tag):
result.append(token.text)
return result
def parse_doc(text, nret = 10):
local_kws = []
doc = nlp(text)
# examine the top-ranked phrases in the document
for phrase in doc._.phrases[:nret]:
# print(phrase.text)
local_kws.append(phrase.text)
return local_kws
class EmbeddingRetrievalSystem():
def __init__(self, weight_citation = False, weight_date = False, weight_keywords = False):
self.ids = st.session_state.ids
self.years = st.session_state.years
self.abstract = st.session_state.abstracts
self.client = OpenAI(api_key = openai_key)
self.embed_model = "text-embedding-3-small"
self.dataset = st.session_state.arxiv_corpus
self.kws = st.session_state.kws
self.cites = st.session_state.cites
self.weight_citation = weight_citation
self.weight_date = weight_date
self.weight_keywords = weight_keywords
self.id_to_index = {self.ids[i]: i for i in range(len(self.ids))}
# self.citation_filter = CitationFilter(self.dataset)
# self.date_filter = DateFilter(self.dataset['date'])
# self.keyword_filter = KeywordFilter(corpus=self.dataset, remove_capitals=True)
def parse_date(self, id):
# indexval = np.where(self.ids == id)[0][0]
indexval = id
return self.years[indexval]
def make_embedding(self, text):
str_embed = self.client.embeddings.create(input = [text], model = self.embed_model).data[0].embedding
return str_embed
def embed_batch(self, texts: List[str]) -> List[np.ndarray]:
embeddings = self.client.embeddings.create(input=texts, model=self.embed_model).data
return [np.array(embedding.embedding, dtype=np.float32) for embedding in embeddings]
def get_query_embedding(self, query):
return self.make_embedding(query)
def analyze_temporal_query(self, query):
return
def calc_faiss(self, query_embedding, top_k = 100):
# xq = query_embedding.reshape(-1,1).T.astype('float32')
# D, I = self.index.search(xq, top_k)
# return I[0], D[0]
tmp = self.dataset.search('embed', query_embedding, k=top_k)
return [tmp.indices, tmp.scores]
def rank_and_filter(self, query, query_embedding, query_date, top_k = 10, return_scores=False, time_result=None):
# st.write('status')
# st.write('toggles', self.toggles)
# st.write('question_type', self.question_type)
# st.write('rag method', self.rag_method)
# st.write('gen method', self.gen_method)
self.weight_keywords = self.toggles["Keyword weighting"]
self.weight_date = self.toggles["Time weighting"]
self.weight_citation = self.toggles["Citation weighting"]
topk_indices, similarities = self.calc_faiss(np.array(query_embedding), top_k = 1000)
similarities = 1/similarities # converting from a distance (less is better) to a similarity (more is better)
query_kws = get_keywords(query)
input_kws = self.query_input_keywords
query_kws = query_kws + input_kws
self.query_kws = query_kws
if self.weight_keywords == True:
sub_kws = [self.kws[i] for i in topk_indices]
kw_weight = np.zeros((len(topk_indices),)) + 0.1
for k in query_kws:
for i in (range(len(topk_indices))):
for j in range(len(sub_kws[i])):
if k.lower() in sub_kws[i][j].lower():
kw_weight[i] = kw_weight[i] + 0.1
# print(i, k, sub_kws[i][j])
# kw_weight = kw_weight**0.36 / np.amax(kw_weight**0.36)
kw_weight = kw_weight / np.amax(kw_weight)
else:
kw_weight = np.ones((len(topk_indices),))
if self.weight_date == True:
sub_dates = [self.years[i] for i in topk_indices]
date = datetime.now().date()
date_diff = np.array([((date - i).days / 365.) for i in sub_dates])
# age_weight = (1 + np.exp(date_diff/2.1))**(-1) + 0.5
age_weight = (1 + np.exp(date_diff/0.7))**(-1)
age_weight = age_weight / np.amax(age_weight)
else:
age_weight = np.ones((len(topk_indices),))
if self.weight_citation == True:
# st.write('weighting by citations')
sub_cites = np.array([self.cites[i] for i in topk_indices])
temp = sub_cites.copy()
temp[sub_cites > 300] = 300.
cite_weight = (1 + np.exp((300-temp)/42.0))**(-1.)
cite_weight = cite_weight / np.amax(cite_weight)
else:
cite_weight = np.ones((len(topk_indices),))
similarities = similarities * (kw_weight) * (age_weight) * (cite_weight)
# if self.weight_keywords:
# keyword_matches = self.keyword_filter.filter(query)
# self.query_kws = keyword_matches
# kw_indices = np.zeros_like(similarities)
# for s in keyword_matches:
# if self.id_to_index[s] in topk_indices:
# # print('yes', self.id_to_index[s], topk_indices[np.where(topk_indices == self.id_to_index[s])[0]])
# similarities[np.where(topk_indices == self.id_to_index[s])[0]] = similarities[np.where(topk_indices == self.id_to_index[s])[0]] * 10.
# similarities = similarities / 10.
filtered_results = [[topk_indices[i], similarities[i]] for i in range(len(similarities))]
top_results = sorted(filtered_results, key=lambda x: x[1], reverse=True)[:top_k]
if return_scores:
return {doc[0]: doc[1] for doc in top_results}
# Only keep the document IDs
top_results = [doc[0] for doc in top_results]
return top_results
def retrieve(self, query, top_k, time_result=None, query_date = None, return_scores = False):
query_embedding = self.get_query_embedding(query)
# Judge time relevance
if time_result is None:
if self.weight_date:
time_result, time_taken = self.analyze_temporal_query(query, self.anthropic_client)
else:
time_result = {'has_temporal_aspect': False, 'expected_year_filter': None, 'expected_recency_weight': None}
top_results = self.rank_and_filter(query,
query_embedding,
query_date,
top_k,
return_scores = return_scores,
time_result = time_result)
return top_results
class HydeRetrievalSystem(EmbeddingRetrievalSystem):
def __init__(self, generation_model: str = "claude-3-haiku-20240307",
embedding_model: str = "text-embedding-3-small",
temperature: float = 0.5,
max_doclen: int = 500,
generate_n: int = 1,
embed_query = True,
conclusion = False, **kwargs):
# Handle the kwargs for the superclass init -- filters/citation weighting
super().__init__(**kwargs)
if max_doclen * generate_n > 8191:
raise ValueError("Too many tokens. Please reduce max_doclen or generate_n.")
self.embedding_model = embedding_model
self.generation_model = generation_model
# HYPERPARAMETERS
self.temperature = temperature # generation temperature
self.max_doclen = max_doclen # max tokens for generation
self.generate_n = generate_n # how many documents
self.embed_query = embed_query # embed the query vector?
self.conclusion = conclusion # generate conclusion as well?
# self.anthropic_key = anthropic_key
# self.generation_client = anthropic.Anthropic(api_key = self.anthropic_key)
self.generation_client = openai_llm(temperature=0,model_name='gpt-4o-mini', openai_api_key = openai_key)
def retrieve(self, query: str, top_k: int = 10, return_scores = False, time_result = None) -> List[Tuple[str, str, float]]:
if time_result is None:
if self.weight_date: time_result, time_taken = analyze_temporal_query(query, self.anthropic_client)
else: time_result = {'has_temporal_aspect': False, 'expected_year_filter': None, 'expected_recency_weight': None}
docs = self.generate_docs(query)
st.expander('Abstract generated with hyde', expanded=False).write(docs)
doc_embeddings = self.embed_docs(docs)
if self.embed_query:
query_emb = self.embed_docs([query])[0]
doc_embeddings.append(query_emb)
embedding = np.mean(np.array(doc_embeddings), axis = 0)
top_results = self.rank_and_filter(query, embedding, query_date=None, top_k = top_k, return_scores = return_scores, time_result = time_result)
return top_results
def generate_doc(self, query: str):
prompt = """You are an expert astronomer. Given a scientific query, generate the abstract of an expert-level research paper
that answers the question. Stick to a maximum length of {} tokens and return just the text of the abstract and conclusion.
Do not include labels for any section. Use research-specific jargon.""".format(self.max_doclen)
# st.write('invoking hyde generation')
# message = self.generation_client.messages.create(
# model = self.generation_model,
# max_tokens = self.max_doclen,
# temperature = self.temperature,
# system = prompt,
# messages=[{ "role": "user",
# "content": [{"type": "text", "text": query,}] }]
# )
# return message.content[0].text
messages = [("system",prompt,),("human", query),]
return self.generation_client.invoke(messages).content
def generate_docs(self, query: str):
docs = []
for i in range(self.generate_n):
# st.write('invoking hyde generation2')
docs.append(self.generate_doc(query))
# with concurrent.futures.ThreadPoolExecutor() as executor:
# st.write('invoking hyde generation2')
# future_to_query = {executor.submit(self.generate_doc, query): query for i in range(self.generate_n)}
# for future in concurrent.futures.as_completed(future_to_query):
# query = future_to_query[future]
# try:
# data = future.result()
# docs.append(data)
# except Exception as exc:
# pass
return docs
def embed_docs(self, docs: List[str]):
return self.embed_batch(docs)
class HydeCohereRetrievalSystem(HydeRetrievalSystem):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.cohere_key = cohere_key
self.cohere_client = cohere.Client(self.cohere_key)
def retrieve(self, query: str,
top_k: int = 10,
rerank_top_k: int = 250,
return_scores = False, time_result = None,
reweight = False) -> List[Tuple[str, str, float]]:
if time_result is None:
if self.weight_date: time_result, time_taken = analyze_temporal_query(query, self.anthropic_client)
else: time_result = {'has_temporal_aspect': False, 'expected_year_filter': None, 'expected_recency_weight': None}
top_results = super().retrieve(query, top_k = rerank_top_k, time_result = time_result)
# doc_texts = self.get_document_texts(top_results)
# docs_for_rerank = [f"Abstract: {doc['abstract']}\nConclusions: {doc['conclusions']}" for doc in doc_texts]
docs_for_rerank = [self.abstract[i] for i in top_results]
if len(docs_for_rerank) == 0:
return []
reranked_results = self.cohere_client.rerank(
query=query,
documents=docs_for_rerank,
model='rerank-english-v3.0',
top_n=top_k
)
final_results = []
for result in reranked_results.results:
doc_id = top_results[result.index]
doc_text = docs_for_rerank[result.index]
score = float(result.relevance_score)
final_results.append([doc_id, "", score])
if reweight:
if time_result['has_temporal_aspect']:
final_results = self.date_filter.filter(final_results, time_score = time_result['expected_recency_weight'])
if self.weight_citation: self.citation_filter.filter(final_results)
if return_scores:
return {result[0]: result[2] for result in final_results}
return [doc[0] for doc in final_results]
def embed_docs(self, docs: List[str]):
return self.embed_batch(docs)
# ----------------------------------------------------------------
if 'ec' not in st.session_state:
ec = HydeCohereRetrievalSystem(weight_keywords=True)
st.session_state.ec = ec
st.toast('loaded retrieval system')
else:
ec = st.session_state.ec
def get_topk(query, top_k):
print('running retrieval')
rs = st.session_state.ec.retrieve(query, top_k, return_scores=True)
return rs
def Library(query, top_k = 7):
rs = get_topk(query, top_k = top_k)
op_docs = ''
for paperno, i in enumerate(rs):
op_docs = op_docs + 'Paper %.0f:' %(paperno+1) +' (published in '+st.session_state.bibcode[i][0:4] + ') ' + st.session_state.titles[i] + '\n' + st.session_state.abstracts[i] + '\n\n'
return op_docs
def Library2(query, top_k = 7):
rs = get_topk(query, top_k = top_k)
absts, fnames = [], []
for paperno, i in enumerate(rs):
absts.append(st.session_state.abstracts[i])
fnames.append(st.session_state.bibcode[i])
return absts, fnames, rs
def get_paper_df(ids):
papers, scores, yrs, links, cites, kws = [], [], [], [], [], []
for i in ids:
papers.append(st.session_state.titles[i])
scores.append(ids[i])
links.append('https://ui.adsabs.harvard.edu/abs/'+st.session_state.bibcode[i]+'/abstract')
yrs.append(st.session_state.bibcode[i][0:4])
cites.append(st.session_state.cites[i])
kws.append(st.session_state.ads_kws[i])
return pd.DataFrame({
'Title': papers,
'Relevance': scores,
'Year': yrs,
'ADS Link': links,
'Citations': cites,
'Keywords': kws,
})
# def find_outliers(inp_simids, arxiv_cutoff_distance = 0.8):
#
# inp_simids = np.array(inp_simids)
#
# # Calculate the centroid for each point, excluding itself
# orange_black_points = st.session_state.embed[inp_simids]
#
# topk_dists = []
# for i, point in enumerate(orange_black_points):
# # Exclude the current point
# other_points = np.delete(orange_black_points, i, axis=0)
# # Calculate centroid of other points
# centroid = np.mean(other_points, axis=0)
# # Calculate distance from the point to this centroid
# dist = np.sqrt(np.sum((point - centroid)**2))
# topk_dists.append(dist)
#
# topk_dists = np.array(topk_dists)
#
# # Separate distances for orange and black points
# orange_distances = topk_dists[:len(inp_simids)]
# black_distances = topk_dists[len(inp_simids):]
#
# # Calculate the median of distances
# orange_black_distances = topk_dists
# median_topk_distance = np.median(orange_black_distances)
#
# # def get_sims_and_dists(inp_data):
#
# # all_sims, all_dists = [], []
#
# # np.random.seed(12)
# # rand_indices = np.random.choice(inp_data.shape[0], size=return_n, replace=False)
#
# # for j in tqdm(range(len(rand_indices))):
#
# # i = rand_indices[j]
# # inferred_vector = inp_data[i,:]
# # sims, dists = find_closest_dists(i, inp_data, return_n + 1)
# # all_sims.append(sims[1:])
# # all_dists.append(dists[1:])
#
# # return np.array(all_sims), np.array(all_dists)
#
# # # Identify papers with distances greater than the 95th percentile
# # _, all_dists = get_sims_and_dists(arxiv_ada_embeddings)
# # arxiv_cutoff_distance = find_cutoff_dist(all_dists)
# # hardcoding for now
# outlier_indices = inp_simids[np.where(orange_black_distances > arxiv_cutoff_distance)[0]]
# # outlier_titles = [titles[i] for i in outlier_indices]
#
# return outlier_indices #, outlier_titles
def create_embedding_plot(rs):
"""
function to create embedding plot
"""
pltsource = ColumnDataSource(data=dict(
x=st.session_state.umap_x,
y=st.session_state.umap_y,
title=st.session_state.titles,
link=st.session_state.bibcode,
))
rsflag = np.zeros((len(st.session_state.ids),))
rsflag[np.array([k for k in rs])] = 1
# outflag = np.zeros((len(st.session_state.ids),))
# outflag[np.array([k for k in find_outliers(rs)])] = 1
pltsource.data['colors'] = rsflag * 0.8 + 0.1
# pltsource.data['colors'][outflag] = 0.5
pltsource.data['sizes'] = (rsflag + 1)**5 / 100
TOOLTIPS = """
<div style="width:300px;">
ID: $index
($x, $y)
@title <br>
@link <br> <br>
</div>
"""
mapper = linear_cmap(field_name="colors", palette=Spectral5, low=0., high=1.)
p = figure(width=700, height=900, tooltips=TOOLTIPS, x_range=(0, 20), y_range=(-4.2,18),
title="UMAP projection of embeddings for the astro-ph corpus")
p.axis.visible=False
p.grid.visible=False
p.outline_line_alpha = 0.
p.circle('x', 'y', radius='sizes', source=pltsource, alpha=0.3, fill_color=mapper, fill_alpha='colors', line_color="lightgrey",line_alpha=0.1)
return p
def extract_keywords(question, ec):
# Simulated keyword extraction (replace with actual logic)
return ['keyword1', 'keyword2', 'keyword3']
# Function to estimate consensus (replace with actual implementation)
def estimate_consensus():
# Simulated consensus estimation (replace with actual calculation)
return 0.75
def run_agent_qa(query, top_k):
# define tools
search = DuckDuckGoSearchAPIWrapper()
tools = [
Tool(
name="Library",
func=Library,
description="A source of information pertinent to your question. Do not answer a question without consulting this!"
),
Tool(
name="Search",
func=search.run,
description="useful for when you need to look up knowledge about common topics or current events",
)
]
if 'tools' not in st.session_state:
st.session_state.tools = tools
# define prompt
# for another question type:
# First, find the quotes from the document that are most relevant to answering the question, and then print them in numbered order.
# Quotes should be relatively short. If there are no relevant quotes, write “No relevant quotes” instead.
template = """You are an expert astronomer and cosmologist.
Answer the following question as best you can using information from the library, but speaking in a concise and factual manner.
If you can not come up with an answer, say you do not know.
Try to break the question down into smaller steps and solve it in a logical manner.
You have access to the following tools:
{tools}
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question. provide information about how you arrived at the answer, and any nuances or uncertainties the reader should be aware of
Begin! Remember to speak in a pedagogical and factual manner."
Question: {input}
Thought:{agent_scratchpad}"""
prompt = hub.pull("hwchase17/react")
prompt.template=template
# path to write intermediate trace to
file_path = "agent_trace.txt"
try:
os.remove(file_path)
except:
pass
file_handler = FileCallbackHandler(file_path)
callback_manager=CallbackManager([file_handler])
# define and execute agent
tool_names = [tool.name for tool in st.session_state.tools]
if 'agent' not in st.session_state:
# agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names)
agent = create_react_agent(llm=gen_llm, tools=tools, prompt=prompt)
st.session_state.agent = agent
if 'agent_executor' not in st.session_state:
agent_executor = AgentExecutor(agent=st.session_state.agent, tools=st.session_state.tools, verbose=True, handle_parsing_errors=True, callbacks=CallbackManager([file_handler]))
st.session_state.agent_executor = agent_executor
answer = st.session_state.agent_executor.invoke({"input": query,})
return answer
def make_rag_qa_answer(query, top_k = 10):
absts, fhdrs, rs = Library2(query, top_k = top_k)
temp_abst = ''
loaders = []
for i in range(len(absts)):
temp_abst = absts[i]
try:
text_file = open("absts/"+fhdrs[i]+".txt", "w")
except:
os.mkdir('absts')
text_file = open("absts/"+fhdrs[i]+".txt", "w")
n = text_file.write(temp_abst)
text_file.close()
loader = TextLoader("absts/"+fhdrs[i]+".txt")
loaders.append(loader)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=150, chunk_overlap=50, add_start_index=True)
splits = text_splitter.split_documents([loader.load()[0] for loader in loaders])
vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings, collection_name='retdoc4')
# retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 6, "fetch_k": len(splits)})
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 6})
for i in range(len(absts)):
os.remove("absts/"+fhdrs[i]+".txt")
template = """You are an expert astronomer and cosmologist.
Answer the following question as best you can using information from the library, but speaking in a concise and factual manner.
If you can not come up with an answer, say you do not know.
Try to break the question down into smaller steps and solve it in a logical manner.
Provide information about how you arrived at the answer, and any nuances or uncertainties the reader should be aware of.
Begin! Remember to speak in a pedagogical and factual manner."
Relevant documents:{context}
Question: {question}
Answer:"""
prompt = PromptTemplate.from_template(template)
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
rag_chain_from_docs = (
RunnablePassthrough.assign(context=(lambda x: format_docs(x["context"])))
| prompt
| gen_llm
| StrOutputParser()
)
rag_chain_with_source = RunnableParallel(
{"context": retriever, "question": RunnablePassthrough()}
).assign(answer=rag_chain_from_docs)
rag_answer = rag_chain_with_source.invoke(query, )
vectorstore.delete_collection()
return rag_answer, rs
def guess_question_type(query: str):
categorization_prompt = """You are an expert astrophysicist and computer scientist specializing in linguistics and semantics. Your task is to categorize a given query into one of the following categories:
1. Summarization
2. Single-paper factual
3. Multi-paper factual
4. Named entity recognition
5. Jargon-specific questions / overloaded words
6. Time-sensitive
7. Consensus evaluation
8. What-ifs and counterfactuals
9. Compositional
Analyze the query carefully, considering its content, structure, and implications. Then, determine which of the above categories best fits the query.
In your analysis, consider the following:
- Does the query ask for a well-known datapoint or mechanism?
- Can it be answered by a single paper or does it require multiple sources?
- Does it involve proper nouns or specific scientific terms?
- Is it time-dependent or likely to change in the near future?
- Does it require evaluating consensus across multiple sources?
- Is it a hypothetical or counterfactual question?
- Does it need to be broken down into sub-queries (i.e. compositional)?
After your analysis, categorize the query into one of the nine categories listed above.
Provide a brief explanation for your categorization, highlighting the key aspects of the query that led to your decision.
Present your final answer in the following format:
<categorization>
Category: [Selected category]
Explanation: [Your explanation for the categorization]
</categorization>"""
# st.write('invoking hyde generation')
# message = self.generation_client.messages.create(
# model = self.generation_model,
# max_tokens = self.max_doclen,
# temperature = self.temperature,
# system = prompt,
# messages=[{ "role": "user",
# "content": [{"type": "text", "text": query,}] }]
# )
# return message.content[0].text
messages = [("system",categorization_prompt,),("human", query),]
return st.session_state.ec.generation_client.invoke(messages).content
class OverallConsensusEvaluation(BaseModel):
consensus: Literal["Strong Agreement", "Moderate Agreement", "Weak Agreement", "No Clear Consensus", "Weak Disagreement", "Moderate Disagreement", "Strong Disagreement"] = Field(
...,
description="The overall level of consensus between the query and the abstracts"
)
explanation: str = Field(
...,
description="A detailed explanation of the consensus evaluation"
)
relevance_score: float = Field(
...,
description="A score from 0 to 1 indicating how relevant the abstracts are to the query overall",
ge=0,
le=1
)
def evaluate_overall_consensus(query: str, abstracts: List[str]) -> OverallConsensusEvaluation:
"""
Evaluates the overall consensus of the abstracts in relation to the query in a single LLM call.
"""
prompt = f"""
Query: {query}
You will be provided with {len(abstracts)} scientific abstracts. Your task is to:
1. Evaluate the overall consensus between the query and the abstracts.
2. Provide a detailed explanation of your consensus evaluation.
3. Assign an overall relevance score from 0 to 1, where 0 means completely irrelevant and 1 means highly relevant.
For the consensus evaluation, use one of the following levels:
Strong Agreement, Moderate Agreement, Weak Agreement, No Clear Consensus, Weak Disagreement, Moderate Disagreement, Strong Disagreement
Here are the abstracts:
{' '.join([f"Abstract {i+1}: {abstract}" for i, abstract in enumerate(abstracts)])}
Provide your evaluation in a structured format.
"""
response = consensus_client.chat.completions.create(
model="gpt-4o-mini", # used to be "gpt-4",
response_model=OverallConsensusEvaluation,
messages=[
{"role": "system", "content": """You are an assistant with expertise in astrophysics for question-answering tasks.
Evaluate the overall consensus of the retrieved scientific abstracts in relation to a given query.
If you don't know the answer, just say that you don't know.
Use six sentences maximum and keep the answer concise."""},
{"role": "user", "content": prompt}
],
temperature=0
)
return response
# Streamlit app
def main():
# st.title("Question Answering App")
# Sidebar (Inputs)
st.sidebar.header("Fine-tune the search")
top_k = st.sidebar.slider("Number of papers to retrieve:", 3, 30, 10)
extra_keywords = st.sidebar.text_input("Enter extra keywords (comma-separated):")
st.sidebar.subheader("Toggles")
toggle_a = st.sidebar.toggle("Weight by keywords", value = False)
toggle_b = st.sidebar.toggle("Weight by date", value = False)
toggle_c = st.sidebar.toggle("Weight by citations", value = False)
method = st.sidebar.radio("Retrieval method:", ["Semantic search", "Semantic search + HyDE", "Semantic search + HyDE + CoHERE"], index=2)
if (method == "Semantic search"):
with st.spinner('set retrieval method to'+ method):
st.session_state.ec = EmbeddingRetrievalSystem(weight_keywords=True)
elif (method == "Semantic search + HyDE"):
with st.spinner('set retrieval method to'+ method):
st.session_state.ec = HydeRetrievalSystem(weight_keywords=True)
elif (method == "Semantic search + HyDE + CoHERE"):
with st.spinner('set retrieval method to'+ method):
st.session_state.ec = HydeCohereRetrievalSystem(weight_keywords=True)
method2 = st.sidebar.radio("Generation complexity:", ["Basic RAG","ReAct Agent"])
if method2 == "Basic RAG":
st.session_state.gen_method = 'rag'
elif method2 == "ReAct Agent":
st.session_state.gen_method = 'agent'
question_type = st.sidebar.selectbox("Select question type:", ["Single paper", "Multi-paper", "Summary"])
store_output = st.sidebar.button("Save output")
# Main page (Outputs)
# st.markdown("""
# <style>
# .stTextInput > div > div { font-size: 50px; }
# </style>
# """, unsafe_allow_html=True)
# st.markdown(
# """
# <style>
# textarea {
# font-size: 3rem !important;
# font-weight: bold;
# font-family: "Times New Roman", Times, serif;
# }
# input {
# font-size: 3rem !important;
# font-weight: bold;
# font-family: "Times New Roman", Times, serif;
# }
# </style>
# """,
# unsafe_allow_html=True,
# )
# query = st.text_area("Ask me anything:", height=30)
query = st.text_input("Ask me anything:")
submit_button = st.button("Submit")
if submit_button:
search_text_list = ['rooting around in the paper pile...','looking for clarity...','scanning the event horizon...','peering into the abyss...','potatoes power this ongoing search...']
with st.spinner(search_text_list[np.random.choice(len(search_text_list))]):
# Process inputs
keywords = [kw.strip() for kw in extra_keywords.split(',')] if extra_keywords else []
toggles = {'Keyword weighting': toggle_a, 'Time weighting': toggle_b, 'Citation weighting': toggle_c}
# Generate outputs
st.session_state.ec.query_input_keywords = keywords
st.session_state.ec.toggles = toggles
st.session_state.ec.question_type = question_type
st.session_state.ec.rag_method = method
st.session_state.ec.gen_method = method2
# Display outputs
if st.session_state.gen_method == 'agent':
answer = run_agent_qa(query, top_k)
rs = get_topk(query, top_k)
st.write(answer["output"])
file_path = "agent_trace.txt"
with open(file_path, 'r') as file:
intermediate_steps = file.read()
st.expander('Intermediate steps', expanded=False).write(intermediate_steps)
elif st.session_state.gen_method == 'rag':
answer, rs = make_rag_qa_answer(query, top_k)
st.write(answer['answer'])
papers_df = get_paper_df(rs)
embedding_plot = create_embedding_plot(rs)
triggered_keywords = st.session_state.ec.query_kws
st.write('**Triggered keywords:** `'+ "`, `".join(triggered_keywords)+'`')
# consensus = estimate_consensus()
with st.expander("Relevant papers", expanded=True):
# st.dataframe(papers_df, hide_index=True)
st.data_editor(papers_df,
column_config = {'ADS Link':st.column_config.LinkColumn(display_text= 'https://ui.adsabs.harvard.edu/abs/(.*?)/abstract')}
)
# with st.expander("Embedding map", expanded=False):
st.bokeh_chart(embedding_plot)
col1, col2 = st.columns(2)
with col1:
st.subheader("Question type suggestion")
question_type_gen = guess_question_type(query)
if '<categorization>' in question_type_gen:
question_type_gen = question_type_gen.split('<categorization>')[1]
if '</categorization>' in question_type_gen:
question_type_gen = question_type_gen.split('</categorization>')[0]
question_type_gen = question_type_gen.replace('\n',' \n')
st.markdown(question_type_gen)
with col2:
# st.subheader("Triggered Keywords")
# st.write(", ".join(triggered_keywords))
consensus_answer = evaluate_overall_consensus(query, [st.session_state.abstracts[i] for i in rs])
st.subheader("Consensus: "+consensus_answer.consensus)
st.markdown(consensus_answer.explanation)
st.markdown('Relevance of retrieved papers to answer: %.1f' %consensus_answer.relevance_score)
# st.write(f"{consensus:.2%}")
else:
st.info("Use the sidebar to tweak the search parameters to get better results.")
if store_output:
st.toast("Output stored successfully!")
if __name__ == "__main__":
main()
|