Spaces:
Running
Running
# Megatron-11b | |
Megatron-11b is a unidirectional language model with `11B` parameters based on [Megatron-LM](https://arxiv.org/pdf/1909.08053.pdf). Following the original Megatron work, we trained the model using intra-layer model parallelism with each layer's parameters split across 8 GPUs. | |
Megatron-11b is trained on the same data and uses the same byte-pair encoding (BPE) as [RoBERTa](https://arxiv.org/pdf/1907.11692.pdf). | |
## Pre-trained models | |
Model | Description | # params | # filesize | Download | |
---|---|---|---|--- | |
`megatron_11b` | megatron_11b unidirectional language model | 11B | 19Gb | [megatron_11b.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/model_parallel/megatron_11b.tar.gz) | |
#### Architecture: | |
Param | Value | |
---|--- | |
embed_dim | 3072 | |
ffn_dim | 3072 * 6 | |
layers | 72 | |
attention heads | 32 | |
#### Training details: | |
Param | value | |
---|--- | |
bsz | 512 | |
num_updates | 300,000 | |
peak_lr | 1.5e-04 | |
lr scheduler | inverse_sqrt | |
clip norm | 0.0 | |
## Example training command (model parallel) | |
Megatron-11b contains too many parameters to train on a single GPU. Following | |
the original Megatron work, we adopt an intra-layer model parallel training | |
approach in which each layer's parameters are split across multiple GPUs and | |
activations and gradients are communicated during the forward/backward pass, | |
respectively. We similarly split the loss computation using the | |
`vocab_parallel_cross_entropy` criterion. | |
The following training command illustrates how to do model parallel training in | |
fairseq. We assume that each machine (node) has 8 GPUs among which to split the | |
model parameters (`--model-parallel-size 8`). If you have access to multiple | |
nodes, you may combine this with data parallel training by increasing | |
`--distributed-world-size`. | |
To train Megatron-11b on a single node: | |
```bash | |
fairseq-train <DATA_PATH> \ | |
--distributed-world-size 8 \ | |
--memory-efficient-fp16 \ | |
--num-workers 2 \ | |
--model-parallel-size 8 \ | |
--criterion vocab_parallel_cross_entropy \ | |
--task language_modeling \ | |
--sample-break-mode none \ | |
--tokens-per-sample 1024 \ | |
--arch transformer_lm_megatron_11b \ | |
--share-decoder-input-output-embed \ | |
--optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-08 --clip-norm 0.0 \ | |
--lr-scheduler inverse_sqrt --lr 0.00015 \ | |
--warmup-updates 3000 --weight-decay 0.01 \ | |
--dropout 0.1 --attention-dropout 0.1 \ | |
--batch-size 2 \ | |
--max-update 300000; | |
``` | |
Note: Above was tested on `DGX-1` box, with `8xV100-32Gb` GPUs. | |
## Results | |
**[Wikitext103](https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/)** | |
Model | Valid perplexity | Test perplexity | |
---|---|--- | |
`megatron_11b` | 10.64 | 10.54 | |
## Evaluating `megatron_11b` on Wikitext-103 | |
#### 1. Downloading Megatron-11b | |
```bash | |
# WARNING: this file is 19GB | |
wget https://dl.fbaipublicfiles.com/fairseq/models/model_parallel/megatron_11b.tar.gz | |
tar -xzvf megatron_11b.tar.gz | |
``` | |
#### 2. Download Wikitext-103 | |
```bash | |
wget https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-raw-v1.zip | |
unzip wikitext-103-raw-v1.zip | |
``` | |
#### 3. Detokenize test tokens | |
Megatron-11b uses a byte-level BPE that expects raw (untokenized) input. Since | |
the wikitext-103 dataset comes tokenized, we apply a simple detokenization | |
process to restore the untokenized test set: | |
```bash | |
python -m examples.megatron_11b.detok wikitext-103-raw/wiki.test.raw > wikitext-103-raw/wiki.test.detok | |
``` | |
#### 4. BPE encoding | |
```bash | |
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json' | |
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe' | |
python -m examples.roberta.multiprocessing_bpe_encoder \ | |
--encoder-json encoder.json \ | |
--vocab-bpe vocab.bpe \ | |
--inputs "wikitext-103-raw/wiki.test.detok" \ | |
--outputs "wikitext-103-raw/wiki.test.bpe" \ | |
--workers 60; | |
``` | |
#### 5. Fairseq binarize | |
```bash | |
fairseq-preprocess \ | |
--only-source \ | |
--testpref wikitext-103-raw/wiki.test.bpe \ | |
--srcdict megatron_11b/dict.txt \ | |
--destdir wikitext103-bin; | |
``` | |
#### 6. Evaluating perplexity. | |
We can now evaluate perplexity on the test set. Note that because we've modified | |
the test set (via detokenization and BPE), the perplexity reported by | |
`fairseq-eval-lm` needs to be renormalized. | |
Compute unnormalized perplexity: | |
```bash | |
DATA_PATH=wikitext103-bin/ | |
fairseq-eval-lm \ | |
$DATA_PATH \ | |
--path megatron_11b/model.pt \ | |
--task language_modeling \ | |
--gen-subset test \ | |
--batch-size 8 \ | |
--criterion cross_entropy \ | |
--context-window 992 \ | |
--distributed-world-size 8 \ | |
--model-parallel-size 8; | |
# Expected PPL (unnormalized_ppl): [8.46] | |
# Note: the eval command needs to run on 8 GPUs for the released model | |
``` | |
Renormalizing formula: `2 ^ ( log_2(unnormalized_PPL) * (270847 / 245566))`. | |
PPL After normalization: `10.54` | |
To renormalize the perplexity, we must account for the change in token count | |
after detokenizing and appling BPE. The formula for this is: | |
`2 ^ ( log_2(unnormalized_PPL) * (new_token_cnt / orig_token_cnt))` | |
For the wikitext-103 test set, the original token count is `245566` and the | |
token count after detokenization and applying BPE is `270847`. | |
The perplexity after renormalization is: | |
`2 ^ ( log_2(8.46) * (270847 / 245566)) = 10.54` | |