File size: 3,235 Bytes
40a799a
 
fbe3ac4
318ff7b
 
d859c3e
 
 
 
 
7bf65ec
d93fe74
 
 
6378bf1
318ff7b
 
 
 
 
 
d93fe74
318ff7b
e8a59ae
0c5dd07
 
 
 
 
b12560a
318ff7b
 
d859c3e
318ff7b
 
d859c3e
0c5dd07
d859c3e
 
42c84c3
0c5dd07
 
40a799a
0c5dd07
 
 
 
 
b12560a
0c5dd07
 
b12560a
0c5dd07
 
 
 
 
 
 
 
 
42c84c3
d93fe74
adbd41e
d859c3e
0c5dd07
d93fe74
d859c3e
318ff7b
 
d859c3e
318ff7b
0c5dd07
 
 
 
 
318ff7b
0c5dd07
318ff7b
 
d93fe74
318ff7b
 
ee9ba92
fbe3ac4
 
318ff7b
 
 
0c5dd07
fbe3ac4
ee9ba92
318ff7b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import faiss
import numpy as np
import gradio as gr
from sentence_transformers import SentenceTransformer
import fitz  # PyMuPDF für die Textextraktion aus PDFs
from transformers import pipeline
import logging

# Logging konfigurieren
logging.basicConfig(level=logging.INFO)

# Modelle laden
model = SentenceTransformer('all-mpnet-base-v2')
qa_model = pipeline("question-answering", model="deepset/roberta-base-squad2")

# FAISS-Index erstellen
def create_faiss_index(documents):
    document_embeddings = model.encode(documents)
    dimension = len(document_embeddings[0])
    index = faiss.IndexFlatL2(dimension)
    document_embeddings = np.array(document_embeddings).astype('float32')
    index.add(document_embeddings)
    return index, documents

# Text in kleinere Chunks aufteilen
def split_text_into_chunks(text, chunk_size=300):
    words = text.split()
    return [" ".join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]

# Text aus PDF extrahieren
def extract_text_from_pdf(pdf_path):
    doc = fitz.open(pdf_path)
    text_chunks = []
    for page_num in range(len(doc)):
        page = doc.load_page(page_num)
        text = page.get_text("text")
        chunks = split_text_into_chunks(text)
        text_chunks.extend(chunks)
    return text_chunks

# Suche und Bewertung
def search_and_rank_answers(query, index, documents, k=10):
    query_embedding = model.encode([query])[0].astype('float32')
    D, I = index.search(np.array([query_embedding]), k=k)

    ranked_answers = []
    for i, doc_index in enumerate(I[0]):
        context = documents[doc_index]
        try:
            result = qa_model(question=query, context=context)
            ranked_answers.append((result['answer'], D[0][i]))  # (Antwort, Distanz)
        except Exception as e:
            logging.warning(f"Fehler bei der Antwortgenerierung: {e}")

    # Antworten nach ihrer Relevanz sortieren
    ranked_answers = sorted(ranked_answers, key=lambda x: x[1])
    return [answer for answer, _ in ranked_answers]

# Antworten kombinieren
def combine_answers(answers):
    return " ".join(answers[:3])  # Kombiniere die Top 3 Antworten

# Gesamtprozess
def chatbot_response(pdf_path, question):
    logging.info(f"Frage: {question}")

    # Text extrahieren
    text_chunks = extract_text_from_pdf(pdf_path)

    # FAISS-Index erstellen
    index, documents = create_faiss_index(text_chunks)

    # Suche nach Antworten
    answers = search_and_rank_answers(question, index, documents, k=10)

    # Antworten kombinieren
    detailed_answer = combine_answers(answers)

    return detailed_answer

# Gradio-Interface
pdf_input = gr.File(label="PDF-Datei hochladen", type="filepath")
question_input = gr.Textbox(label="Frage eingeben", placeholder="Stelle eine Frage zu dem PDF-Dokument")
response_output = gr.Textbox(label="Antwort")

interface = gr.Interface(
    fn=chatbot_response,
    inputs=[pdf_input, question_input],
    outputs=response_output,
    title="PDF-Fragebeantwortung mit FAISS und Transformers",
    description="Lade eine PDF-Datei hoch und stelle Fragen zu ihrem Inhalt. Das System kombiniert mehrere Antworten, um präzisere Ergebnisse zu liefern."
)

if __name__ == "__main__":
    interface.launch()