Spaces:
Sleeping
Sleeping
File size: 2,726 Bytes
6378bf1 bd2041d b6d30d1 bd2041d 6378bf1 bd2041d 6378bf1 b6d30d1 6378bf1 bd2041d b6d30d1 bd2041d 6378bf1 bd2041d 6378bf1 bd2041d 6378bf1 bd2041d b6d30d1 bd2041d b6d30d1 6378bf1 bd2041d b6d30d1 bd2041d b6d30d1 bd2041d 6378bf1 f965a1f 6378bf1 bd2041d 6378bf1 b6d30d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
import gradio as gr
from langchain.vectorstores import Chroma
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from transformers import LayoutLMv3Processor, AutoModelForSeq2SeqLM
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from pdf2image import convert_from_path
import os
class LayoutLMv3OCR:
def __init__(self):
self.processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base")
self.model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/layoutlmv3-base")
def extract_text(self, pdf_path):
images = convert_from_path(pdf_path)
text_pages = []
for image in images:
inputs = self.processor(images=image, return_tensors="pt")
outputs = self.model.generate(**inputs)
text = self.processor.batch_decode(outputs, skip_special_tokens=True)[0]
text_pages.append(text)
return text_pages
ocr_tool = LayoutLMv3OCR()
def process_pdf_and_query(pdf_path, question):
loader = PyPDFLoader(pdf_path)
documents = loader.load()
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vectordb = Chroma.from_documents(documents, embeddings)
retriever = vectordb.as_retriever()
prompt_template = "Beantworte die folgende Frage basierend auf dem Dokument: {context}\nFrage: {question}\nAntwort:"
prompt = PromptTemplate(input_variables=["context", "question"], template=prompt_template)
qa_chain = RetrievalQA.from_chain_type(llm=None, retriever=retriever, chain_type_kwargs={"prompt": prompt})
response = qa_chain.run(input_documents=documents, question=question)
return response
def chatbot_response(pdf, question):
# Speichern der hochgeladenen Datei auf dem lokalen Dateisystem
pdf_path = "uploaded_pdf.pdf"
# Schreibe die PDF-Datei in eine lokale Datei
with open(pdf_path, "wb") as f:
f.write(pdf.read())
extracted_text = ocr_tool.extract_text(pdf_path)
answer = process_pdf_and_query(pdf_path, question)
# Lösche die gespeicherte PDF-Datei nach der Verarbeitung
os.remove(pdf_path)
return answer
pdf_input = gr.File(label="PDF-Datei hochladen")
question_input = gr.Textbox(label="Frage eingeben")
response_output = gr.Textbox(label="Antwort")
interface = gr.Interface(
fn=chatbot_response,
inputs=[pdf_input, question_input],
outputs=response_output,
title="RAG Chatbot mit PDF-Unterstützung",
description="Lade eine PDF-Datei hoch und stelle Fragen zu ihrem Inhalt."
)
if __name__ == "__main__":
interface.launch(share=True)
|