Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from langchain.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.memory import ConversationBufferMemory | |
from langchain.llms import HuggingFacePipeline | |
from transformers import pipeline | |
# **Embeddings-Modell (kein API-Key nötig, lokal geladen)** | |
EMBEDDINGS_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2" | |
LLM_MODEL_NAME = "google/flan-t5-small" # Alternativ: "google/flan-t5-base", etc. | |
# **Dokumente laden und aufteilen** | |
def load_and_split_docs(list_file_path): | |
loaders = [PyPDFLoader(x) for x in list_file_path] | |
documents = [] | |
for loader in loaders: | |
documents.extend(loader.load()) | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=32) | |
doc_splits = text_splitter.split_documents(documents) | |
return doc_splits | |
# **Vektor-Datenbank mit FAISS erstellen** | |
def create_db(docs): | |
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL_NAME) | |
faiss_index = FAISS.from_documents(docs, embeddings) | |
return faiss_index | |
# **LLM-Kette initialisieren** | |
def initialize_llm_chain(llm_model, temperature, max_tokens, vector_db): | |
# Hugging Face Pipeline lokal verwenden | |
local_pipeline = pipeline( | |
"text2text-generation", | |
model=llm_model, | |
max_length=max_tokens, | |
temperature=temperature | |
) | |
llm = HuggingFacePipeline(pipeline=local_pipeline) | |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) | |
retriever = vector_db.as_retriever() | |
# Retrieval-Augmented QA-Kette | |
qa_chain = ConversationalRetrievalChain.from_llm( | |
llm, | |
retriever=retriever, | |
memory=memory, | |
return_source_documents=True | |
) | |
return qa_chain | |
# **Datenbank und Kette initialisieren** | |
def initialize_database(list_file_obj): | |
list_file_path = [x.name for x in list_file_obj if x is not None] | |
doc_splits = load_and_split_docs(list_file_path) | |
vector_db = create_db(doc_splits) | |
return vector_db, "Datenbank erfolgreich erstellt!" | |
def initialize_llm_chain_wrapper(llm_temperature, max_tokens, vector_db): | |
qa_chain = initialize_llm_chain(LLM_MODEL_NAME, llm_temperature, max_tokens, vector_db) | |
return qa_chain, "QA-Chatbot ist bereit!" | |
# **Konversation mit QA-Kette führen** | |
def conversation(qa_chain, message, history): | |
response = qa_chain({"question": message, "chat_history": history}) | |
response_text = response["answer"] | |
sources = [doc.metadata["source"] for doc in response["source_documents"]] | |
return qa_chain, response_text, history + [(message, response_text)] | |
# **Gradio-Benutzeroberfläche** | |
def demo(): | |
with gr.Blocks() as demo: | |
vector_db = gr.State() | |
qa_chain = gr.State() | |
gr.HTML("<center><h1>RAG Chatbot mit FAISS und lokalen Modellen</h1></center>") | |
with gr.Row(): | |
with gr.Column(): | |
document = gr.Files(file_types=[".pdf"], label="PDF hochladen") | |
db_btn = gr.Button("Erstelle Vektordatenbank") | |
db_status = gr.Textbox(value="Status: Nicht initialisiert", show_label=False) | |
slider_temperature = gr.Slider(0.01, 1.0, value=0.5, label="Temperature") | |
slider_max_tokens = gr.Slider(64, 512, value=256, label="Max Tokens") | |
qachain_btn = gr.Button("Initialisiere QA-Chatbot") | |
with gr.Column(): | |
chatbot = gr.Chatbot(height=400) | |
msg = gr.Textbox(placeholder="Frage eingeben...") | |
submit_btn = gr.Button("Absenden") | |
db_btn.click(initialize_database, [document], [vector_db, db_status]) | |
qachain_btn.click(initialize_llm_chain_wrapper, [slider_temperature, slider_max_tokens, vector_db], [qa_chain]) | |
submit_btn.click(conversation, [qa_chain, msg, chatbot], [qa_chain, msg, chatbot]) | |
demo.launch(debug=True) | |
if __name__ == "__main__": | |
demo() | |