Spaces:
Sleeping
Sleeping
File size: 4,137 Bytes
2c20468 244a9ba 23cbcf8 244a9ba 23cbcf8 244a9ba 23cbcf8 244a9ba 2c20468 244a9ba 2c20468 244a9ba 2c20468 244a9ba 2c20468 244a9ba 23cbcf8 244a9ba 2c20468 244a9ba 2c20468 244a9ba 812f60c 244a9ba 0dda7f4 812f60c 244a9ba 2c20468 244a9ba 2c20468 244a9ba 812f60c 2c20468 244a9ba 2c20468 812f60c 2c20468 244a9ba 2c20468 244a9ba 2c20468 244a9ba 2c20468 244a9ba 2c20468 812f60c 2c20468 244a9ba 2c20468 812f60c 244a9ba 812f60c 244a9ba 23cbcf8 244a9ba 812f60c 231e3ba 244a9ba 812f60c 244a9ba 812f60c 244a9ba 812f60c 2c20468 812f60c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
import os
import gradio as gr
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.llms import HuggingFacePipeline
from transformers import pipeline
# **Embeddings-Modell (kein API-Key nötig, lokal geladen)**
EMBEDDINGS_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
LLM_MODEL_NAME = "google/flan-t5-small" # Alternativ: "google/flan-t5-base", etc.
# **Dokumente laden und aufteilen**
def load_and_split_docs(list_file_path):
loaders = [PyPDFLoader(x) for x in list_file_path]
documents = []
for loader in loaders:
documents.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=32)
doc_splits = text_splitter.split_documents(documents)
return doc_splits
# **Vektor-Datenbank mit FAISS erstellen**
def create_db(docs):
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL_NAME)
faiss_index = FAISS.from_documents(docs, embeddings)
return faiss_index
# **LLM-Kette initialisieren**
def initialize_llm_chain(llm_model, temperature, max_tokens, vector_db):
# Hugging Face Pipeline lokal verwenden
local_pipeline = pipeline(
"text2text-generation",
model=llm_model,
max_length=max_tokens,
temperature=temperature
)
llm = HuggingFacePipeline(pipeline=local_pipeline)
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
retriever = vector_db.as_retriever()
# Retrieval-Augmented QA-Kette
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
memory=memory,
return_source_documents=True
)
return qa_chain
# **Datenbank und Kette initialisieren**
def initialize_database(list_file_obj):
list_file_path = [x.name for x in list_file_obj if x is not None]
doc_splits = load_and_split_docs(list_file_path)
vector_db = create_db(doc_splits)
return vector_db, "Datenbank erfolgreich erstellt!"
def initialize_llm_chain_wrapper(llm_temperature, max_tokens, vector_db):
qa_chain = initialize_llm_chain(LLM_MODEL_NAME, llm_temperature, max_tokens, vector_db)
return qa_chain, "QA-Chatbot ist bereit!"
# **Konversation mit QA-Kette führen**
def conversation(qa_chain, message, history):
response = qa_chain({"question": message, "chat_history": history})
response_text = response["answer"]
sources = [doc.metadata["source"] for doc in response["source_documents"]]
return qa_chain, response_text, history + [(message, response_text)]
# **Gradio-Benutzeroberfläche**
def demo():
with gr.Blocks() as demo:
vector_db = gr.State()
qa_chain = gr.State()
gr.HTML("<center><h1>RAG Chatbot mit FAISS und lokalen Modellen</h1></center>")
with gr.Row():
with gr.Column():
document = gr.Files(file_types=[".pdf"], label="PDF hochladen")
db_btn = gr.Button("Erstelle Vektordatenbank")
db_status = gr.Textbox(value="Status: Nicht initialisiert", show_label=False)
slider_temperature = gr.Slider(0.01, 1.0, value=0.5, label="Temperature")
slider_max_tokens = gr.Slider(64, 512, value=256, label="Max Tokens")
qachain_btn = gr.Button("Initialisiere QA-Chatbot")
with gr.Column():
chatbot = gr.Chatbot(height=400)
msg = gr.Textbox(placeholder="Frage eingeben...")
submit_btn = gr.Button("Absenden")
db_btn.click(initialize_database, [document], [vector_db, db_status])
qachain_btn.click(initialize_llm_chain_wrapper, [slider_temperature, slider_max_tokens, vector_db], [qa_chain])
submit_btn.click(conversation, [qa_chain, msg, chatbot], [qa_chain, msg, chatbot])
demo.launch(debug=True)
if __name__ == "__main__":
demo()
|