Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 120,764 Bytes
21fa774 3d30dc9 21fa774 eb01d26 21fa774 489390d 21fa774 efa49ac 21fa774 e9baae7 21fa774 fa5651c 6be6b93 dc4bc7c 489390d 21fa774 489390d 21fa774 489390d 21fa774 980641c 21fa774 e13b250 21fa774 70eb39e 260767b 880765a 3d30dc9 70eb39e 21fa774 b4bf6c5 21fa774 e13b250 21fa774 70eb39e 21fa774 70eb39e 21fa774 e13b250 489390d 5702a81 489390d c003572 8331e7f 980641c 489390d 5702a81 489390d 5702a81 489390d 5702a81 489390d 21fa774 7ff851c 21fa774 bafcc24 21fa774 c95ea1d 21fa774 260767b 21fa774 dc4bc7c 980641c dc4bc7c 980641c dc4bc7c 21fa774 4855a6e 21fa774 3d30dc9 c95ea1d 3d30dc9 21fa774 3d30dc9 c95ea1d 3d30dc9 21fa774 dc4bc7c e9baae7 db33be0 e9baae7 db33be0 c95ea1d db33be0 c95ea1d dc4bc7c db33be0 c95ea1d 980641c c95ea1d db33be0 980641c db33be0 980641c db33be0 980641c db33be0 980641c db33be0 c95ea1d e9baae7 c95ea1d e9baae7 c95ea1d e9baae7 c95ea1d e9baae7 c95ea1d 21fa774 fa5651c 21fa774 fa5651c 21fa774 fa5651c 21fa774 fa5651c 21fa774 fa5651c 21fa774 a71e3b5 21fa774 fa5651c 21fa774 a71e3b5 21fa774 babda17 21fa774 babda17 21fa774 babda17 21fa774 babda17 21fa774 babda17 21fa774 babda17 21fa774 4855a6e 21fa774 f06e185 21fa774 f06e185 fa5651c 21fa774 8af6c3a 21fa774 15b93be 21fa774 dc4bc7c 21fa774 15b93be 21fa774 15b93be 21fa774 8af6c3a 21fa774 8af6c3a 21fa774 8af6c3a 21fa774 8af6c3a 21fa774 15b93be dc4bc7c 8af6c3a 15b93be 21fa774 8af6c3a 21fa774 15b93be 21fa774 c95ea1d 0ab9582 c95ea1d db33be0 c95ea1d 260767b e9baae7 980641c e9baae7 17800e0 c95ea1d 980641c 0ab9582 c95ea1d 7ff851c 0ab9582 391ee30 c95ea1d 0ab9582 c95ea1d 21fa774 c95ea1d 15b93be c95ea1d 7ff851c 6be6b93 21fa774 c95ea1d e9baae7 c95ea1d e9baae7 c95ea1d e9baae7 0ab9582 c95ea1d 23e9baa e9baae7 c95ea1d e9baae7 0ab9582 e9baae7 c95ea1d e9baae7 c95ea1d cfe2359 c95ea1d e9baae7 6be6b93 c95ea1d 6be6b93 c95ea1d 980641c db33be0 980641c e9baae7 980641c db33be0 dc4bc7c 980641c dc4bc7c 980641c db33be0 980641c db33be0 980641c db33be0 980641c db33be0 980641c db33be0 d558ad5 db33be0 980641c db33be0 980641c db33be0 980641c db33be0 980641c e9baae7 c95ea1d 880765a 21fa774 880765a 21fa774 3d30dc9 21fa774 dc4bc7c 21fa774 c95ea1d 21fa774 c95ea1d 21fa774 c95ea1d 21fa774 980641c fa5651c 980641c c95ea1d 7ff851c 21fa774 3d30dc9 21fa774 c95ea1d 21fa774 6be6b93 21fa774 17800e0 21fa774 7ff851c 21fa774 7ff851c 21fa774 7ff851c 21fa774 9321db6 d7129b1 980641c d7129b1 9321db6 980641c 4fb9ffe 9321db6 980641c 4fb9ffe 9321db6 21fa774 980641c 21fa774 980641c 21fa774 980641c 4fb9ffe 21fa774 980641c 4fb9ffe 21fa774 d7129b1 7ff851c 21fa774 6be6b93 21fa774 65b3da3 6be6b93 21fa774 6be6b93 21fa774 6be6b93 21fa774 6be6b93 21fa774 6be6b93 21fa774 6be6b93 21fa774 6be6b93 21fa774 6be6b93 21fa774 dc4bc7c 1576887 dc4bc7c ab1d670 1576887 dc4bc7c 1576887 17800e0 dc4bc7c 1576887 dc4bc7c 21fa774 65b3da3 dc4bc7c 489390d 21fa774 dc4bc7c d7129b1 21fa774 980641c 21fa774 6be6b93 65b3da3 6be6b93 21fa774 6be6b93 21fa774 6be6b93 21fa774 6be6b93 21fa774 65b3da3 21fa774 980641c 21fa774 1576887 21fa774 980641c 21fa774 1576887 21fa774 0dd77ac 21fa774 980641c 4fb9ffe 21fa774 980641c 4fb9ffe 21fa774 8af6c3a 21fa774 8af6c3a 21fa774 8af6c3a 21fa774 8af6c3a 21fa774 8af6c3a 21fa774 880765a 4103963 880765a 7ff851c 880765a 8af6c3a 880765a 0872a03 980641c 880765a c95ea1d 880765a 0872a03 c95ea1d 880765a 21fa774 880765a 21fa774 880765a 8af6c3a 880765a 21fa774 c95ea1d 880765a c95ea1d 880765a c95ea1d 0ab9582 c95ea1d 8af6c3a 7ff851c 8af6c3a c95ea1d 8af6c3a 0ab9582 c95ea1d 8af6c3a 21fa774 880765a 21fa774 880765a 21fa774 8af6c3a c95ea1d 8af6c3a 880765a 980641c 21fa774 880765a c95ea1d 21fa774 c95ea1d 880765a 21fa774 880765a 980641c 21fa774 880765a 980641c 880765a 21fa774 980641c 21fa774 980641c 21fa774 880765a 980641c 880765a 980641c 21fa774 880765a 8af6c3a 880765a 980641c 8af6c3a 980641c 880765a 8af6c3a 880765a 7ff851c 880765a 8af6c3a 980641c 880765a 8af6c3a 980641c 8af6c3a 980641c 880765a 0872a03 880765a 21fa774 880765a c95ea1d 880765a 21fa774 c95ea1d 880765a c95ea1d 880765a 0872a03 c95ea1d 5702a81 880765a c95ea1d 880765a c95ea1d 880765a 21fa774 c95ea1d 21fa774 880765a 21fa774 3d30dc9 8af6c3a 21fa774 3d30dc9 21fa774 8af6c3a 3d30dc9 8af6c3a 21fa774 8af6c3a 21fa774 a71e3b5 21fa774 a71e3b5 21fa774 3d30dc9 c95ea1d 3d30dc9 4103963 1c686ed c95ea1d 1c686ed 4103963 3d30dc9 c95ea1d 3d30dc9 980641c 3d30dc9 1c686ed 0872a03 c95ea1d 0872a03 3d30dc9 21fa774 db33be0 dc4bc7c db33be0 21fa774 980641c 5702a81 21fa774 e9baae7 21fa774 e9baae7 21fa774 e9baae7 21fa774 c95ea1d 21fa774 dc4bc7c 21fa774 65b3da3 21fa774 0872a03 21fa774 0872a03 7ff851c 0872a03 21fa774 c95ea1d 21fa774 0872a03 21fa774 c95ea1d 21fa774 0872a03 21fa774 8af6c3a 21fa774 8af6c3a 21fa774 8af6c3a 15b93be 21fa774 f06e185 21fa774 15b93be 21fa774 c95ea1d 21fa774 c95ea1d 21fa774 980641c 21fa774 980641c 21fa774 c95ea1d 21fa774 a71e3b5 c72f721 21fa774 880765a 21fa774 c72f721 21fa774 880765a 8af6c3a 21fa774 15b93be 21fa774 c95ea1d 21fa774 c95ea1d 6bf1a66 0872a03 c95ea1d 6bf1a66 0872a03 c95ea1d 6bf1a66 c95ea1d 0872a03 c95ea1d 260767b 0872a03 260767b 0872a03 c95ea1d 5702a81 c95ea1d 5702a81 c95ea1d 21fa774 880765a 21fa774 c72f721 21fa774 880765a 21fa774 15b93be 21fa774 c95ea1d 21fa774 880765a 21fa774 c72f721 21fa774 880765a 21fa774 15b93be 21fa774 0872a03 21fa774 880765a 8af6c3a 880765a 21fa774 880765a 21fa774 7ff851c 21fa774 264757c 0dd77ac 21fa774 880765a 0872a03 c95ea1d 21fa774 880765a 0872a03 21fa774 0dd77ac 21fa774 8af6c3a 21fa774 0872a03 c95ea1d 21fa774 8af6c3a 880765a 21fa774 880765a 21fa774 c95ea1d 0872a03 c95ea1d 7ff851c c95ea1d 7ff851c 21fa774 c95ea1d 0872a03 c95ea1d 21fa774 0872a03 21fa774 c95ea1d 21fa774 c95ea1d 21fa774 c95ea1d 21fa774 0872a03 c95ea1d 21fa774 0872a03 c95ea1d 21fa774 2996553 21fa774 efa49ac db33be0 880765a db33be0 15b93be db33be0 15b93be db33be0 15b93be 980641c e9baae7 db33be0 15b93be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 |
import glob
import smtplib
from datetime import datetime, timedelta
import itertools
import textwrap
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from email.utils import formatdate, make_msgid
from functools import cache
from math import pi
from time import sleep, time
from uuid import uuid4
import io
import os
from pathlib import Path
import sys
import pytz
from Bio import SeqIO
from Bio.Align import PairwiseAligner
from email_validator import validate_email, EmailNotValidError
import gradio as gr
import hydra
import pandas as pd
from pandarallel import pandarallel
import requests
from rdkit.DataStructs import BulkTanimotoSimilarity
from requests.adapters import HTTPAdapter, Retry
from markdown import markdown
from rdkit import Chem
from rdkit.Chem import AllChem, Draw, RDConfig, PandasTools, Descriptors, rdMolDescriptors, rdmolops, Lipinski, Crippen
from rdkit.Chem.Features.ShowFeats import _featColors
from rdkit.Chem.Scaffolds import MurckoScaffold
import py3Dmol
from bokeh.models import Legend, NumberFormatter, BooleanFormatter, HTMLTemplateFormatter, LegendItem
from bokeh.palettes import Category20c_20
from bokeh.plotting import figure
from bokeh.transform import cumsum
from bokeh.resources import INLINE
import seaborn as sns
import panel as pn
from apscheduler.schedulers.background import BackgroundScheduler
from tinydb import TinyDB, Query
import swifter
from tqdm.auto import tqdm
from deepscreen.data.dti import validate_seq_str, rdkit_canonicalize, FASTA_PAT, SMILES_PAT
from deepscreen.predict import predict
sys.path.append(os.path.join(RDConfig.RDContribDir, 'SA_Score'))
import sascorer
DATASET_MAX_LEN = 10_240
SERVER_DATA_DIR = os.getenv('DATA') # '/data'
DB_EXPIRY = timedelta(hours=48).total_seconds()
CSS = """
.help-tip {
position: absolute;
display: inline-block;
top: 16px;
right: 0px;
text-align: center;
border-radius: 40%;
/* border: 2px solid darkred; background-color: #8B0000;*/
width: 24px;
height: 24px;
font-size: 16px;
line-height: 26px;
cursor: default;
transition: all 0.5s cubic-bezier(0.55, 0, 0.1, 1);
z-index: 100 !important;
}
.help-tip:hover {
cursor: pointer;
/*background-color: #ccc;*/
}
.help-tip:before {
content: '?';
font-weight: 700;
color: #8B0000;
z-index: 100 !important;
}
.help-tip p {
visibility: hidden;
opacity: 0;
text-align: left;
background-color: #EFDDE3;
padding: 20px;
width: 300px;
position: absolute;
border-radius: 4px;
right: -4px;
color: #494F5A;
font-size: 13px;
line-height: normal;
transform: scale(0.7);
transform-origin: 100% 0%;
transition: all 0.5s cubic-bezier(0.55, 0, 0.1, 1);
z-index: 100;
}
.help-tip:hover p {
cursor: default;
visibility: visible;
opacity: 1;
transform: scale(1.0);
}
.help-tip p:before {
position: absolute;
content: '';
width: 0;
height: 0;
border: 6px solid transparent;
border-bottom-color: #EFDDE3;
right: 10px;
top: -12px;
}
.help-tip p:after {
width: 100%;
height: 40px;
content: '';
position: absolute;
top: -5px;
left: 0;
z-index: 101;
}
.upload_button {
background-color: #008000;
}
.absolute {
position: absolute;
}
.example {
padding: 0;
background: none;
border: none;
text-decoration: underline;
box-shadow: none;
text-align: left !important;
display: inline-block !important;
}
footer {
visibility: hidden
}
"""
class View3DmolCell(py3Dmol.view):
def __init__(self, width=640, height=480):
divid = "3dmolviewer_UNIQUEID"
self.uniqueid = None
if isinstance(width, int):
width = '%dpx' % width
if isinstance(width, int):
height = '%dpx' % height
self.startjs = '''<div id="%s" style="position: relative; width: %s; height: %s;">
</div>\n''' % (divid, width, height)
self.startjs += '<script>\n'
self.endjs = '</script>'
self.updatejs = ''
self.viewergrid = None
self.startjs += 'viewer_UNIQUEID = $3Dmol.createViewer(document.getElementById("%s"),{backgroundColor:"white"});\n' % divid
self.startjs += "viewer_UNIQUEID.zoomTo();\n"
self.endjs = "viewer_UNIQUEID.render();\n" + self.endjs
FEAT_FACTORY = AllChem.BuildFeatureFactory(os.path.join(RDConfig.RDDataDir, 'BaseFeatures.fdef'))
def rgb_to_hex(rgb):
rgb = tuple(round(i * 255) for i in rgb)
return '#{:02x}{:02x}{:02x}'.format(rgb[0], rgb[1], rgb[2])
def mol_to_pharm3d(mol, mode='html'):
if mol is None:
return
# AllChem.Compute2DCoords(mol)
mol = Chem.AddHs(mol)
params = AllChem.ETKDGv3()
params.randomSeed = 0xf00d # for reproducibility
AllChem.EmbedMolecule(mol, params)
feats = FEAT_FACTORY.GetFeaturesForMol(mol)
view = View3DmolCell(width=400, height=400)
for feat in feats:
pos = feat.GetPos()
color = _featColors.get(feat.GetFamily(), (.5, .5, .5))
view.addSphere({
'center': {'x': pos.x, 'y': pos.y, 'z': pos.z},
'radius': 0.5,
'color': rgb_to_hex(color)
})
mol_block = Chem.MolToMolBlock(mol)
view.addModel(mol_block, 'sdf')
view.setStyle({'stick': {}})
view.zoomTo()
if mode == 'html':
return view.write_html()
# case 'png':
# return view.png()
class HelpTip:
def __new__(cls, text):
return gr.HTML(
# elem_classes="absolute",
value=f'<div class="help-tip"><p>{text}</p>',
)
TASK_MAP = {
'Compound-Protein Interaction': 'DTI',
'Compound-Protein Binding Affinity': 'DTA',
}
TASK_METRIC_MAP = {
'DTI': 'AUROC',
'DTA': 'CI',
'Compound-Protein Interaction': 'AUROC',
'Compound-Protein Binding Affinity': 'CI',
'CPI': 'DTI',
'CPA': 'DTA',
}
PRESET_MAP = {
'DeepDTA': 'deep_dta',
'DeepConvDTI': 'deep_conv_dti',
'GraphDTA': 'graph_dta',
'MGraphDTA': 'm_graph_dta',
'HyperAttentionDTI': 'hyper_attention_dti',
'MolTrans': 'mol_trans',
'TransformerCPI': 'transformer_cpi',
'TransformerCPI2': 'transformer_cpi_2',
'DrugBAN': 'drug_ban',
'DrugVQA-Seq': 'drug_vqa'
}
TARGET_FAMILY_MAP = {
'General': 'general',
'Kinase': 'kinase',
'Non-Kinase Enzyme': 'non_kinase_enzyme',
'Membrane Receptor': 'membrane_receptor',
'Nuclear Receptor': 'nuclear_receptor',
'Ion Channel': 'ion_channel',
'Others': 'others',
# 'general': 'general',
# 'kinase': 'kinase',
# 'non-kinase enzyme': 'non_kinase_enzyme',
# 'membrane receptor': 'membrane_receptor',
# 'nuclear Receptor': 'nuclear_receptor',
# 'ion channel': 'ion_channel',
# 'others': 'others',
}
TARGET_LIBRARY_MAP = {
'DrugBank (Human)': 'drugbank_targets.csv',
'ChEMBL33 (Human)': 'ChEMBL33_human_proteins.csv',
}
DRUG_LIBRARY_MAP = {
'DrugBank (Human)': 'drugbank_compounds.csv',
'Drug Repurposing Hub': 'drug_repurposing_hub.csv',
'Enamine Discovery Diversity Set (DDS-10)': 'Enamine_Discovery_Diversity_Set_10_10240cmpds_20240130.csv',
'Enamine Phenotypic Screening Library (PSL-5760)': 'Enamine_Phenotypic_Screening_Library_plated_5760cmds_2020_07_20.csv'
}
COLUMN_ALIASES = {
'X1': 'Compound SMILES',
'X2': 'Target FASTA',
'ID1': 'Compound ID',
'ID2': 'Target ID',
'Y': 'Actual CPI/CPA',
'Y^': 'Predicted CPI/CPA',
}
DRUG_SCRENN_CPI_OPTS = [
'Calculate Max. Sequence Identity between the Input Target and Targets in the Training Set',
'Calculate Max. Tanimoto Similarity between the Hit Compound and Known Ligands of the Input Target',
'Calculate Max. Sequence Identity between the Input Target and Known Targets of Hit Compound',
]
DRUG_SCRENN_CPA_OPTS = [
'Calculate Max. Sequence Identity between the Input Target and Targets in the Training Set',
]
TARGET_IDENTIFY_CPI_OPTS = [
'Calculate Max. Tanimoto Similarity between the Input Compound and Compounds in the Training Set',
'Calculate Max. Sequence Identity between the Identified Target and Known Targets of the Input Compound',
'Calculate Max. Tanimoto Similarity between the Input Compound and Known Ligands of the Identified Target',
]
TARGET_IDENTIFY_CPA_OPTS = [
'Calculate Max. Tanimoto Similarity between the Input Compound and Compounds in the Training Set',
]
pd.set_option('display.float_format', '{:.3f}'.format)
PandasTools.molRepresentation = 'svg'
PandasTools.drawOptions = Draw.rdMolDraw2D.MolDrawOptions()
PandasTools.drawOptions.clearBackground = False
PandasTools.drawOptions.bondLineWidth = 1
PandasTools.drawOptions.explicitMethyl = True
PandasTools.drawOptions.singleColourWedgeBonds = True
PandasTools.drawOptions.useCDKAtomPalette()
PandasTools.molSize = (100, 64)
def remove_job_record(job_id):
# Delete the job from the database
db.remove(Job.id == job_id)
# Delete the corresponding files
files = glob.glob(f"{SERVER_DATA_DIR}/{job_id}*")
for file_path in files:
if os.path.exists(file_path):
os.remove(file_path)
def check_expiry():
Job = Query()
jobs = db.all()
for job in jobs:
# Check if the job has expired
if job['status'] != 'RUNNING':
expiry_time = job['expiry_time'] if job['expiry_time'] is not None else job['start_time'] + DB_EXPIRY
if expiry_time < time():
# Delete the job from the database
db.remove(Job.id == job['id'])
# Delete the corresponding file
files = glob.glob(f"{SERVER_DATA_DIR}/{job['id']}*")
for file_path in files:
if os.path.exists(file_path):
os.remove(file_path)
elif job['status'] == 'RUNNING' and time() - job['start_time'] > 4 * 60 * 60: # 4 hours
# Mark the job as failed
db.update({'status': 'FAILED',
'error': 'Job has timed out by exceeding the maximum running time of 4 hours.'},
Job.id == job['id'])
if job.get('email'):
send_email(job)
def smiles_to_ecfp(smiles):
mol = Chem.MolFromSmiles(smiles)
if mol:
ecfp = AllChem.GetMorganFingerprintAsBitVect(mol, radius=2, nBits=2048)
else:
ecfp = []
return ecfp
def max_tanimoto_similarity(smi, seen_smiles_with_fp):
if smi is None or seen_smiles_with_fp is None or seen_smiles_with_fp.empty:
return {'Max. Tanimoto Similarity': 0, 'Max. Tanimoto Similarity Compound': None}
if smi in seen_smiles_with_fp['X1'].values:
compound = smi
if 'ID1' in seen_smiles_with_fp.columns:
id1 = seen_smiles_with_fp.loc[seen_smiles_with_fp['X1'] == smi, 'ID1'].values[0]
if pd.notnull(id1) and id1 != '':
compound = id1
return {'Max. Tanimoto Similarity': 1, 'Max. Tanimoto Similarity Compound': compound}
mol = Chem.MolFromSmiles(smi)
if mol is None:
return {'Max. Tanimoto Similarity': 0, 'Max. Tanimoto Similarity Compound': None}
mol_ecfp = AllChem.GetMorganFingerprintAsBitVect(mol, radius=2, nBits=2048)
sims = pd.Series(BulkTanimotoSimilarity(mol_ecfp, seen_smiles_with_fp['FP'].values)).to_numpy()
idx = sims.argmax()
compound = seen_smiles_with_fp.iloc[idx]['X1']
if 'ID1' in seen_smiles_with_fp.columns:
id1 = seen_smiles_with_fp.iloc[idx]['ID1']
if pd.notnull(id1) and id1 != '':
compound = id1
return {'Max. Tanimoto Similarity': sims[idx], 'Max. Tanimoto Similarity Compound': compound}
def alignment_score(query, target):
aligner = PairwiseAligner()
aligner.mode = 'local'
alignment = aligner.align(query, target)
return alignment.score / max(len(query), len(target))
def max_sequence_identity(seq, seen_fastas):
if seq is None or seen_fastas is None or seen_fastas.empty:
return {'Max. Sequence Identity': 0, 'Max. Sequence Identity Target': None}
if seq in seen_fastas['X2'].values:
target = seq
if 'ID2' in seen_fastas.columns:
id2 = seen_fastas.loc[seen_fastas['X2'] == seq, 'ID2'].values[0]
if pd.notnull(id2) and id2 != '':
target = id2
return {'Max. Sequence Identity': 1, 'Max. Sequence Identity Target': target}
cached_alignment_score = cache(alignment_score)
max_iden = 0
target = None
for fasta in seen_fastas['X2'].values:
identity = cached_alignment_score(seq, fasta)
if identity > max_iden:
max_iden = identity
target = fasta
if 'ID2' in seen_fastas.columns:
id2 = seen_fastas.loc[seen_fastas['X2'] == fasta, 'ID2'].values[0]
if pd.notnull(id2) and id2 != '':
target = id2
if max_iden == 1:
break
cached_alignment_score.cache_clear()
return {'Max. Sequence Identity': max_iden, 'Max. Sequence Identity Target': target}
def get_seen_smiles(family, task):
if family == 'General':
family = 'all_families_full'
else:
family = TARGET_FAMILY_MAP[family.title()]
seen_smiles = pd.read_csv(
f'data/benchmarks/seen_compounds/{family}_{task.lower()}_random_split.csv')
return seen_smiles
def get_seen_fastas(family, task):
if family == 'General':
family = 'all_families_full'
else:
family = TARGET_FAMILY_MAP[family.title()]
seen_fastas = pd.read_csv(
f'data/benchmarks/seen_targets/{family}_{task.lower()}_random_split.csv')
return seen_fastas
@cache
def get_fasta_family_map():
usecols = ['X2', 'ID2', 'Target Family']
fasta_family_map = pd.concat([
pd.read_csv('data/target_libraries/ChEMBL33_all_spe_single_prot_info.csv', usecols=usecols),
pd.read_csv('data/target_libraries/idmapping_not_in_chembl.csv', usecols=usecols)
]).drop_duplicates(subset=['X2'], keep='first')
return fasta_family_map
def lipinski(mol):
"""
Lipinski's rules:
Hydrogen bond donors <= 5
Hydrogen bond acceptors <= 10
Molecular weight <= 500 daltons
logP <= 5
"""
return (
Lipinski.NumHDonors(mol) <= 5 and
Lipinski.NumHAcceptors(mol) <= 10 and
Descriptors.MolWt(mol) <= 500 and
Crippen.MolLogP(mol) <= 5
)
def reos(mol):
"""
Rapid Elimination Of Swill filter:
Molecular weight between 200 and 500
LogP between -5.0 and +5.0
H-bond donor count between 0 and 5
H-bond acceptor count between 0 and 10
Formal charge between -2 and +2
Rotatable bond count between 0 and 8
Heavy atom count between 15 and 50
"""
return (
200 <= Descriptors.MolWt(mol) <= 500 and
-5.0 <= Crippen.MolLogP(mol) <= 5.0 and
0 <= Lipinski.NumHDonors(mol) <= 5 and
0 <= Lipinski.NumHAcceptors(mol) <= 10 and
-2 <= rdmolops.GetFormalCharge(mol) <= 2 and
0 <= rdMolDescriptors.CalcNumRotatableBonds(mol) <= 8 and
15 <= rdMolDescriptors.CalcNumHeavyAtoms(mol) <= 50
)
def ghose(mol):
"""
Ghose drug like filter:
Molecular weight between 160 and 480
LogP between -0.4 and +5.6
Atom count between 20 and 70
Molar refractivity between 40 and 130
"""
return (
160 <= Descriptors.MolWt(mol) <= 480 and
-0.4 <= Crippen.MolLogP(mol) <= 5.6 and
20 <= rdMolDescriptors.CalcNumAtoms(mol) <= 70 and
40 <= Crippen.MolMR(mol) <= 130
)
def veber(mol):
"""
The Veber filter is a rule of thumb filter for orally active drugs described in
Veber et al., J Med Chem. 2002; 45(12): 2615-23.:
Rotatable bonds <= 10
Topological polar surface area <= 140
"""
return (
rdMolDescriptors.CalcNumRotatableBonds(mol) <= 10 and
rdMolDescriptors.CalcTPSA(mol) <= 140
)
def rule_of_three(mol):
"""
Rule of Three filter (Congreve et al., Drug Discov. Today. 8 (19): 876–7, (2003).):
Molecular weight <= 300
LogP <= 3
H-bond donor <= 3
H-bond acceptor count <= 3
Rotatable bond count <= 3
"""
return (
Descriptors.MolWt(mol) <= 300 and
Crippen.MolLogP(mol) <= 3 and
Lipinski.NumHDonors(mol) <= 3 and
Lipinski.NumHAcceptors(mol) <= 3 and
rdMolDescriptors.CalcNumRotatableBonds(mol) <= 3
)
@cache
def load_smarts_patterns(smarts_path):
# Load the CSV file containing SMARTS patterns
smarts_df = pd.read_csv(Path(smarts_path))
# Convert all SMARTS patterns to molecules
smarts_mols = [Chem.MolFromSmarts(smarts) for smarts in smarts_df['smarts']]
return smarts_mols
def smarts_filter(mol, smarts_mols):
for smarts_mol in smarts_mols:
if smarts_mol is not None and mol.HasSubstructMatch(smarts_mol):
return False
return True
def pains(mol):
smarts_mols = load_smarts_patterns("data/filters/pains.csv")
return smarts_filter(mol, smarts_mols)
def mlsmr(mol):
smarts_mols = load_smarts_patterns("data/filters/mlsmr.csv")
return smarts_filter(mol, smarts_mols)
def dundee(mol):
smarts_mols = load_smarts_patterns("data/filters/dundee.csv")
return smarts_filter(mol, smarts_mols)
def glaxo(mol):
smarts_mols = load_smarts_patterns("data/filters/glaxo.csv")
return smarts_filter(mol, smarts_mols)
def bms(mol):
smarts_mols = load_smarts_patterns("data/filters/bms.csv")
return smarts_filter(mol, smarts_mols)
SCORE_MAP = {
'SAscore': sascorer.calculateScore,
'LogP': Crippen.MolLogP,
'Molecular Weight': Descriptors.MolWt,
'Number of Atoms': rdMolDescriptors.CalcNumAtoms,
'Number of Heavy Atoms': rdMolDescriptors.CalcNumHeavyAtoms,
'Molar Refractivity': Crippen.MolMR,
'H-Bond Donor Count': Lipinski.NumHDonors,
'H-Bond Acceptor Count': Lipinski.NumHAcceptors,
'Rotatable Bond Count': rdMolDescriptors.CalcNumRotatableBonds,
'Topological Polar Surface Area': rdMolDescriptors.CalcTPSA,
}
FILTER_MAP = {
# TODO support number_of_violations
'REOS': reos,
"Lipinski's Rule of Five": lipinski,
'Ghose': ghose,
'Rule of Three': rule_of_three,
'Veber': veber,
'PAINS': pains,
'MLSMR': mlsmr,
'Dundee': dundee,
'Glaxo': glaxo,
'BMS': bms,
}
def validate_columns(df, mandatory_cols):
missing_cols = [col for col in mandatory_cols if col not in df.columns]
if missing_cols:
error_message = (f"The following mandatory columns are missing "
f"in the uploaded dataset: {str(mandatory_cols).strip('[]')}.")
raise ValueError(error_message)
else:
return
def process_target_fasta(sequence):
try:
if sequence:
lines = sequence.strip().split("\n")
if lines[0].startswith(">"):
lines = lines[1:]
return ''.join(lines).split(">")[0]
# record = list(SeqIO.parse(io.StringIO(sequence), "fasta"))[0]
# return str(record.seq)
else:
raise ValueError('Empty FASTA sequence.')
except Exception as e:
raise gr.Error(f'Failed to process FASTA due to error: {str(e)}')
def send_email(job_info):
if job_info.get('email'):
try:
email_info = job_info.copy()
email_serv = os.getenv('EMAIL_SERV')
email_port = os.getenv('EMAIL_PORT')
email_addr = os.getenv('EMAIL_ADDR')
email_pass = os.getenv('EMAIL_PASS')
email_form = os.getenv('EMAIL_FORM')
email_subj = os.getenv('EMAIL_SUBJ')
for key, value in email_info.items():
if key.endswith("time") and value:
email_info[key] = ts_to_str(value, get_timezone_by_ip(email_info['ip']))
server = smtplib.SMTP(email_serv, int(email_port))
# server.starttls()
server.login(email_addr, email_pass)
msg = MIMEMultipart("alternative")
msg["From"] = email_addr
msg["To"] = email_info['email']
msg["Subject"] = email_subj.format(**email_info)
msg["Date"] = formatdate(localtime=True)
msg["Message-ID"] = make_msgid()
msg.attach(MIMEText(markdown(email_form.format(**email_info)), 'html'))
msg.attach(MIMEText(email_form.format(**email_info), 'plain'))
server.sendmail(email_addr, email_info['email'], msg.as_string())
server.quit()
gr.Info('Email notification sent.')
except Exception as e:
gr.Warning('Failed to send email notification due to error: ' + str(e))
def check_user_running_job(email, request):
message = ("You already have a running prediction job (ID: {id}) under this {reason}. "
"Please wait for it to complete before submitting another job.")
try:
# with open('jobs.json', 'r') as f: # /data/
# # Load the JSON data from the file
# jobs = json.load(f)
#
# for job_id, job_info in jobs.items():
# # check if a job is running for the email
# if email:
# if job_info["email"] == email and job_info["status"] == "running":
# return message.format(id=job_id, reason="email")
# # check if a job is running for the session
# elif request.cookies:
# for key, value in job_info["cookies"].items() and job_info["status"] == "running":
# if key in request.cookies and request.cookies[key] == value:
# return message.format(id=job_id, reason="session")
# # check if a job is running for the IP
# else:
# if job_info["IP"] == request.client.host and job_info["status"] == "running":
# return message.format(id=job_id, reason="IP")
# check if a job is running for the email
Job = Query()
if email:
job = db.search((Job.email == email) & (Job.status == "RUNNING"))
if job:
return message.format(id=job[0]['id'], reason="email")
# check if a job is running for the session
elif request.cookies:
for key, value in request.cookies.items():
job = db.search((Job.cookies[key] == value) & (Job.status == "RUNNING"))
if job:
return message.format(id=job[0]['id'], reason="session")
# check if a job is running for the IP
else:
job = db.search((Job.IP == request.client.host) & (Job.status == "RUNNING"))
if job:
return message.format(id=job[0]['id'], reason="IP")
return False
except Exception as e:
raise gr.Error(f'Failed to validate user running jobs due to error: {str(e)}')
def get_timezone_by_ip(ip):
try:
data = session.get(f'https://worldtimeapi.org/api/ip/{ip}').json()
return data['timezone']
except Exception:
return 'UTC'
def ts_to_str(timestamp, timezone):
# Create a timezone-aware datetime object from the UNIX timestamp
dt = datetime.fromtimestamp(timestamp, pytz.utc)
# Convert the timezone-aware datetime object to the target timezone
target_timezone = pytz.timezone(timezone)
localized_dt = dt.astimezone(target_timezone)
# Format the datetime object to the specified string format
return localized_dt.strftime('%Y-%m-%d %H:%M:%S (%Z%z)')
def lookup_job(job_id):
gr.Info('Start querying the job database...')
stop = False
retry = 0
while not stop:
try:
sleep(5)
Job = Query()
jobs = db.search((Job.id == job_id))
if jobs:
job = jobs[0]
job_status = job['status']
job_type = job['type']
error = job['error']
start_time = ts_to_str(job['start_time'], get_timezone_by_ip(job['ip']))
if job.get('end_time'):
end_time = ts_to_str(job['end_time'], get_timezone_by_ip(job['ip']))
if job.get('expiry_time'):
expiry_time = ts_to_str(job['expiry_time'], get_timezone_by_ip(job['ip']))
if job_status == "RUNNING":
yield {
pred_lookup_status: f'''
Your **{job_type}** job (ID: **{job_id}**) started at
**{start_time}** and is **RUNNING...**
It might take a few minutes up to a few hours depending on the prediction dataset, the model, and the queue status.
You may keep the page open and wait for job completion, or close the page and revisit later to look up the job status
using the job id. You will also receive an email notification once the job is done.
''',
pred_lookup_btn: gr.Button(visible=False),
pred_lookup_stop_btn: gr.Button(visible=True)
}
if job_status == "COMPLETED":
stop = True
msg = f"Your {job_type} job (ID: {job_id}) has been **COMPLETED**"
msg += f" at {end_time}" if job.get('end_time') else ""
msg += f" and the results will expire by {expiry_time}." if job.get('expiry_time') else "."
msg += f' Redirecting to the report page...'
gr.Info(msg)
yield {
pred_lookup_status: msg,
pred_lookup_btn: gr.Button(visible=True),
pred_lookup_stop_btn: gr.Button(visible=False),
tabs: gr.Tabs(selected='Chemical Property Report'),
file_for_report: job['output_file']
}
if job_status == "FAILED":
stop = True
msg = f'Your {job_type} job (ID: {job_id}) has **FAILED**'
msg += f' at {end_time}' if job.get('end_time') else ''
msg += f' due to error: {error}.' if job.get('expiry_time') else '.'
gr.Info(msg)
yield {
pred_lookup_status: msg,
pred_lookup_btn: gr.Button(visible=True),
pred_lookup_stop_btn: gr.Button(visible=False),
tabs: gr.Tabs(selected='Prediction Status Lookup'),
}
else:
stop = (retry > 3)
if not stop:
msg = f'Job ID {job_id} not found. Retrying... ({retry})'
else:
msg = f'Job ID {job_id} not found after {retry} retries. Please check the job ID and try again.'
gr.Info(msg)
retry += 1
yield {
pred_lookup_status: msg,
pred_lookup_btn: gr.Button(visible=True),
pred_lookup_stop_btn: gr.Button(visible=False),
tabs: gr.Tabs(selected='Prediction Status Lookup'),
}
except Exception as e:
raise gr.Error(f'Failed to retrieve job status due to error: {str(e)}')
def submit_predict(predict_filepath, task, preset, target_family, opts, job_info):
job_id = job_info['id']
status = job_info['status']
send_email(job_info)
db.insert(job_info)
error = None
task_file_abbr = {'Compound-Protein Interaction': 'CPI', 'Compound-Protein Binding Affinity': 'CPA'}
predictions_file = None
df_training = pd.read_csv(f'data/complete_{TASK_MAP[task].lower()}_dataset.csv')
df_training['X1^'] = df_training['X1']
orig_df = pd.read_csv(predict_filepath)
alignment_df = get_fasta_family_map()
prediction_df = pd.DataFrame()
@cache
def detect_family(query):
# Check for an exact match first
exact_match = alignment_df[alignment_df['X2'] == query]
if not exact_match.empty:
row = exact_match.iloc[0]
return row['Target Family']
# If no exact match, then calculate alignment score
else:
aligner = PairwiseAligner()
aligner.mode = 'local'
def align_score(target):
alignment = aligner.align(query, target)
return alignment.score / max(len(query), len(target))
alignment_df['score'] = alignment_df['X2'].apply(align_score)
row = alignment_df.loc[alignment_df['score'].idxmax()]
return row['Target Family']
if 'Target Family' not in orig_df.columns:
orig_df['Target Family'] = None
if orig_df['Target Family'].isna().any():
orig_df.loc[orig_df['Target Family'].isna(), 'Target Family'] = (
orig_df.loc[orig_df['Target Family'].isna(), 'X2'].swifter.apply(detect_family)
)
orig_df['Target Family'] = orig_df['Target Family'].str.capitalize()
detect_family.cache_clear()
orig_df['X1^'] = orig_df['X1'].swifter.apply(rdkit_canonicalize)
orig_df = orig_df.merge(df_training[['X1^', 'X2', 'Y']], on=['X1^', 'X2'], how='left', indicator=False)
annotated_df = orig_df[~orig_df['Y'].isna()].copy()
annotated_df.rename(columns={'Y': 'Y^'}, inplace=True)
annotated_df['Source'] = 'Database'
columns_to_drop = ['X1^', 'Compound', 'Scaffold', 'Scaffold SMILES']
columns_to_drop = [col for col in columns_to_drop if col in annotated_df.columns]
annotated_df.drop(columns_to_drop, axis=1, inplace=True)
# Save the unannotated data
unannotated_df = orig_df[orig_df['Y'].isna()].drop(['Y'], axis=1)
if not unannotated_df.empty:
unannotated_df.to_csv(predict_filepath, index=False, na_rep='')
else:
annotated_df.to_csv(predictions_file, index=False, na_rep='')
status = "COMPLETED"
return {run_state: False}
columns_to_drop = ['ID1', 'X1^', 'Compound', 'Scaffold', 'Scaffold SMILES', 'ID2', 'Y', 'Y^']
columns_to_drop = [col for col in columns_to_drop if col in orig_df.columns]
orig_df.drop(columns_to_drop, axis=1, inplace=True)
try:
if target_family != 'Family-Specific Auto-Recommendation':
target_family_value = TARGET_FAMILY_MAP[target_family.title()]
task_value = TASK_MAP[task]
preset_value = PRESET_MAP[preset]
predictions_file = (f'{SERVER_DATA_DIR}/'
f'{job_id}_{task_file_abbr[task]}_{preset}_{target_family_value}_predictions.csv')
cfg = hydra.compose(
config_name="webserver_inference",
overrides=[f"task={task_value}",
f"preset={preset_value}",
f"ckpt_path=resources/checkpoints/{preset_value}-{task_value}-{target_family_value}.ckpt",
f"data.data_file='{str(predict_filepath)}'"])
predictions, _ = predict(cfg)
predictions = pd.concat([pd.DataFrame(prediction) for prediction in predictions], ignore_index=True)
predictions['Source'] = f'Predicted ({preset} {target_family})'
df_list = [prediction_df, predictions]
prediction_df = pd.concat([df for df in df_list if not df.empty])
else:
predictions_file = f'{SERVER_DATA_DIR}/{job_id}_{task_file_abbr[task]}_family-recommended_predictions.csv'
task_value = TASK_MAP[task]
score = TASK_METRIC_MAP[task]
benchmark_df = pd.read_csv(f'data/benchmarks/{task_value}_test_metrics.csv')
predict_df = pd.read_csv(predict_filepath)
for family, subset in predict_df.groupby('Target Family'):
predict_subset_filepath = os.path.join(
os.path.dirname(predict_filepath), f'{job_id}_{family}_input.csv'
)
subset.to_csv(predict_subset_filepath, index=False, na_rep='')
seen_compounds = get_seen_smiles(family, task_value)['X1'].values
if subset['X1^'].iloc[0] in seen_compounds:
scenario = "Seen Compound"
else:
scenario = "Unseen Compound"
filtered_df = benchmark_df[(benchmark_df['Family'] == family.title())
& (benchmark_df['Scenario'] == scenario)
& (benchmark_df['Type'] == 'Family')]
seen_compounds = get_seen_smiles('General', task_value)['X1'].values
if subset['X1^'].iloc[0] in seen_compounds:
scenario = "Seen Compound"
else:
scenario = "Unseen Compound"
filtered_df = pd.concat([
filtered_df,
benchmark_df[(benchmark_df['Family'] == family.title())
& (benchmark_df['Scenario'] == scenario)
& (benchmark_df['Type'] == 'General')]
])
row = filtered_df.loc[filtered_df[score].idxmax()]
preset_value = PRESET_MAP[row['Model']]
target_family = TARGET_FAMILY_MAP[family.title()] if row['Type'] == 'Family' else 'general'
cfg = hydra.compose(
config_name="webserver_inference",
overrides=[f"task={task_value}",
f"preset={preset_value}",
f"ckpt_path=resources/checkpoints/{preset_value}-{task_value}-{target_family}.ckpt",
f"data.data_file='{str(predict_subset_filepath)}'"])
predictions, _ = predict(cfg)
predictions = pd.concat([pd.DataFrame(prediction) for prediction in predictions], ignore_index=True)
predictions['Source'] = (f'Predicted ({row["Model"]} '
f'{family.title() if row["Type"] == "Family" else "General"})')
df_list = [prediction_df, predictions]
prediction_df = pd.concat([df for df in df_list if not df.empty])
prediction_df = prediction_df.merge(orig_df, on=['X1', 'X2'], how='left', indicator=False)
df_list = [prediction_df, annotated_df]
prediction_df = pd.concat([df for df in df_list if not df.empty], ignore_index=True)
# Advanced options for Drug Hit Screening
if "Calculate Max. Sequence Identity between the Input Target and Targets in the Training Set" in opts:
x2 = prediction_df['X2'].iloc[0]
prediction_df[[
'Max. Sequence Identity to Training Targets',
'Max. Id. Training Target'
]] = pd.Series(max_sequence_identity(x2, df_training))
if "Calculate Max. Tanimoto Similarity between the Hit Compound and Known Ligands of the Input Target" in opts:
x2 = prediction_df['X2'].iloc[0]
pos_compounds_df = df_training.loc[(df_training['X2'] == x2) & (df_training['Y'] == 1)].copy()
pos_compounds_df['FP'] = pos_compounds_df['X1'].swifter.apply(smiles_to_ecfp)
@cache
def max_sim(smiles):
return max_tanimoto_similarity(smiles, seen_smiles_with_fp=pos_compounds_df)
prediction_df[[
'Max. Tanimoto Similarity to Known Ligands',
'Max. Sim. Ligand'
]] = prediction_df['X1'].swifter.apply(max_sim).apply(pd.Series)
max_sim.cache_clear()
if "Calculate Max. Sequence Identity between the Input Target and Known Targets of Hit Compound" in opts:
x2 = prediction_df['X2'].iloc[0]
prediction_df['X1^'] = prediction_df['X1'].swifter.apply(rdkit_canonicalize)
@cache
def max_id(compound):
pos_targets_df = df_training.loc[df_training['X1'] == compound]
return max_sequence_identity(x2, seen_fastas=pos_targets_df)
prediction_df[['Max. Sequence Identity to Known Targets of Hit Compound',
'Max. Id. Target']] = (
prediction_df['X1^'].swifter.apply(max_id).apply(pd.Series)
)
prediction_df.drop(['X1^'], axis=1, inplace=True)
max_id.cache_clear()
# Advanced options for Target Protein Identification
if "Calculate Max. Tanimoto Similarity between the Input Compound and Compounds in the Training Set" in opts:
x1 = rdkit_canonicalize(prediction_df['X1'].iloc[0])
prediction_df['FP'] = prediction_df['X1'].swifter.apply(smiles_to_ecfp)
prediction_df[[
'Max. Tanimoto Similarity to Training Compounds',
'Max. Sim. Training Compound'
]] = pd.Series(max_tanimoto_similarity(x1, df_training))
if "Calculate Max. Sequence Identity between the Identified Target and Known Targets of the Input Compound" in opts:
x1 = rdkit_canonicalize(prediction_df['X1'].iloc[0])
pos_targets_df = df_training.loc[(df_training['X1'] == x1) & (df_training['Y'] == 1)].copy()
@cache
def max_id(fasta):
return max_sequence_identity(fasta, seen_fastas=pos_targets_df)
prediction_df[[
'Max. Sequence Identity to Known Targets of Input Compound',
'Max. Id. Target'
]] = prediction_df['X2'].swifter.apply(max_id).apply(pd.Series)
max_id.cache_clear()
if "Calculate Max. Tanimoto Similarity between the Input Compound and Known Ligands of the Identified Target" in opts:
x1 = rdkit_canonicalize(prediction_df['X1'].iloc[0])
@cache
def max_sim(fasta):
pos_targets_df = df_training.loc[(df_training['X2'] == fasta) & (df_training['Y'] == 1)].copy()
pos_targets_df['FP'] = pos_targets_df['X1'].swifter.apply(smiles_to_ecfp)
return max_tanimoto_similarity(x1, seen_smiles_with_fp=pos_targets_df)
prediction_df[[
'Max. Tanimoto Similarity to Known Ligands of Identified Target',
'Max. Sim. Ligand'
]] = prediction_df['X2'].swifter.apply(max_sim).apply(pd.Series)
max_sim.cache_clear()
prediction_df.drop(['N'], axis=1).to_csv(predictions_file, index=False, na_rep='')
status = "COMPLETED"
return {run_state: False}
except Exception as e:
gr.Warning(f"Prediction job failed due to error: {str(e)}")
status = "FAILED"
predictions_file = None
error = str(e)
return {run_state: False}
finally:
Job = Query()
job_query = (Job.id == job_id)
end_time = time()
expiry_time = end_time + DB_EXPIRY
db.update({'end_time': end_time,
'expiry_time': expiry_time,
'status': status,
'error': error,
'input_file': predict_filepath,
'output_file': predictions_file},
job_query)
if job_info := db.search(job_query)[0]:
if job_info.get('email'):
send_email(job_info)
def update_df(file, progress=gr.Progress(track_tqdm=True)):
if file and Path(file).is_file():
task = None
if "_CPI_" in str(file):
task = 'Compound-Protein Interaction'
elif "_CPA_" in str(file):
task = 'Compound-Protein Binding Affinity'
df = pd.read_csv(file)
if 'N' in df.columns:
df.set_index('N', inplace=True)
if not any(col in ['X1', 'X2'] for col in df.columns):
gr.Warning("At least one of columns `X1` and `X2` must be in the uploaded dataset.")
return {analyze_btn: gr.Button(interactive=False)}
if 'X1' in df.columns:
if 'Compound' not in df.columns or df['Compound'].dtype != 'object':
df['Compound'] = df['X1'].swifter.apply(
lambda smiles: PandasTools._MolPlusFingerprint(Chem.MolFromSmiles(smiles)))
df['Scaffold'] = df['Compound'].swifter.apply(MurckoScaffold.GetScaffoldForMol)
df['Scaffold SMILES'] = df['Scaffold'].swifter.apply(lambda x: Chem.MolToSmiles(x))
if task == 'Compound-Protein Binding Affinity':
# Convert Y^ from pIC50 to IC50
if 'Y^' in df.columns:
df['Y^'] = 10 ** (-df['Y^'])
return {html_report: create_html_report(df, file=None, task=task),
raw_df: df,
report_df: df.copy(),
analyze_btn: gr.Button(interactive=True),
report_task: task} # pie_chart
else:
return {analyze_btn: gr.Button(interactive=False)}
def create_html_report(df, file=None, task=None, opts=(), progress=gr.Progress(track_tqdm=True)):
df_html = df.copy(deep=True)
df_html.dropna(how='all', axis=1, inplace=True)
column_aliases = COLUMN_ALIASES.copy()
cols_left = list(pd.Index(
['ID1', 'X1', 'Scaffold SMILES', 'Compound', 'Scaffold', 'ID2', 'X2', 'Y^']).intersection(df_html.columns))
# cols_right = list(pd.Index(['X1', 'X2']).intersection(df_html.columns))
# df_html = df_html[cols_left + (df_html.columns.drop(cols_left + cols_right).tolist()) + cols_right]
df_html = df_html[cols_left + df_html.columns.drop(cols_left).tolist()]
if isinstance(task, str):
column_aliases.update({
'Y^': 'Interaction Probability' if task == 'Compound-Protein Interaction'
else 'Binding Affinity (IC50 [nM])'
})
ascending = True if column_aliases['Y^'] == 'Binding Affinity (IC50 [nM])' else False
df_html = df_html.sort_values(
[col for col in ['Y^'] if col in df_html.columns], ascending=ascending
)
if not file:
df_html = df_html.iloc[:31]
# Remove repeated info for one-against-N tasks to save visual and physical space
job = 'Chemical Property'
unique_entity = 'Unique Entity'
unique_df = None
category = None
columns_unique = None
if 'Exclude Pharmacophore 3D' not in opts:
df_html['Pharmacophore'] = df_html['Compound'].swifter.apply(
lambda x: mol_to_pharm3d(x) if not pd.isna(x) else x)
if 'Compound' in df_html.columns and 'Exclude Molecular Graph' not in opts:
df_html['Compound'] = df_html['Compound'].swifter.apply(
lambda x: PandasTools.PrintAsImageString(x) if not pd.isna(x) else x)
else:
df_html.drop(['Compound'], axis=1, inplace=True)
if 'Scaffold' in df_html.columns and 'Exclude Scaffold Graph' not in opts:
df_html['Scaffold'] = df_html['Scaffold'].swifter.apply(
lambda x: PandasTools.PrintAsImageString(x) if not pd.isna(x) else x)
else:
df_html.drop(['Scaffold'], axis=1, inplace=True)
if 'X1' in df_html.columns and 'X2' in df_html.columns:
n_compound = df_html['X1'].nunique()
n_protein = df_html['X2'].nunique()
if n_compound == 1 and n_protein >= 2:
unique_entity = 'Compound of Interest'
if any(col in df_html.columns for col in ['Y^', 'Y']):
job = 'Target Protein Identification'
category = 'Target Family'
columns_unique = df_html.columns.isin(
['ID1', 'Pharmacophore', 'Compound', 'Scaffold', 'X1', 'Scaffold SMILES',
'Max. Tanimoto Similarity to Training Compounds', 'Max. Sim. Training Compound']
+ list(FILTER_MAP.keys()) + list(SCORE_MAP.keys())
)
elif n_compound >= 2 and n_protein == 1:
unique_entity = 'Target of Interest'
if any(col in df_html.columns for col in ['Y^', 'Y']):
job = 'Drug Hit Screening'
category = 'Scaffold SMILES'
columns_unique = df_html.columns.isin(
['X2', 'ID2', 'Max. Sequence Identity to Training Targets', 'Max. Id. Training Target']
)
elif 'Y^' in df_html.columns:
job = 'Interaction Pair Inference'
df_html.rename(columns=column_aliases, inplace=True)
df_html.index.name = 'Index'
if 'Target FASTA' in df_html.columns:
df_html['Target FASTA'] = df_html['Target FASTA'].swifter.apply(
lambda x: wrap_text(x) if not pd.isna(x) else x)
num_cols = df_html.select_dtypes('number').columns
num_col_colors = sns.color_palette('husl', len(num_cols))
bool_cols = df_html.select_dtypes(bool).columns
bool_col_colors = {True: 'lightgreen', False: 'lightpink'}
if columns_unique is not None:
unique_df = df_html.loc[:, columns_unique].iloc[[0]].copy()
df_html = df_html.loc[:, ~columns_unique]
if not file:
if 'Compound ID' in df_html.columns:
df_html.drop(['Compound SMILES'], axis=1, inplace=True)
if 'Target ID' in df_html.columns:
df_html.drop(['Target FASTA'], axis=1, inplace=True)
if 'Target FASTA' in df_html.columns:
df_html['Target FASTA'] = df_html['Target FASTA'].swifter.apply(
lambda x: wrap_text(x) if not pd.isna(x) else x)
if 'Scaffold SMILES' in df_html.columns:
df_html.drop(['Scaffold SMILES'], axis=1, inplace=True)
# FIXME: Temporarily drop pharmacophore column before an image solution is found
if 'Pharmacophore' in df_html.columns:
df_html.drop(['Pharmacophore'], axis=1, inplace=True)
styled_df = df_html.fillna('').style.format(precision=3)
for i, col in enumerate(num_cols):
cmap = sns.light_palette(num_col_colors[i], as_cmap=True)
if col in df_html.columns:
if col not in ['Binding Affinity (IC50 [nM])']:
cmap.set_bad('white')
styled_df = styled_df.background_gradient(
subset=[col], cmap=cmap)
else:
cmap = cmap.reversed()
cmap.set_bad('white')
styled_df = styled_df.background_gradient(
subset=[col], cmap=cmap)
if any(df_html.columns.isin(bool_cols)):
styled_df.map(lambda val: f'background-color: {bool_col_colors[val]}', subset=bool_cols)
table_html = styled_df.to_html()
unique_html = ''
if unique_df is not None:
if 'Target FASTA' in unique_df.columns:
unique_df['Target FASTA'] = unique_df['Target FASTA'].str.replace('\n', '<br>')
if any(unique_df.columns.isin(bool_cols)):
unique_df = unique_df.style.map(
lambda val: f"background-color: {bool_col_colors[val]}", subset=bool_cols)
unique_html = (f'<div style="font-family: Courier !important;">'
f'{unique_df.to_html(escape=False, index=False)}</div>')
return (f'<div style="font-size: 16px; font-weight: bold;">{job} Report Preview (Top 30 Records)</div>'
f'<div style="overflow-x:auto; font-family: Courier !important;">{unique_html}</div>'
f'<div style="overflow:auto; height: 300px; font-family: Courier !important;">{table_html}</div>')
else:
image_zoom_formatter = HTMLTemplateFormatter(template='<div class="image-zoom-viewer"><%= value %></div>')
uniprot_id_formatter = HTMLTemplateFormatter(
template='<% if (value == value) { ' # Check if value is not NaN
'if (/^[OPQ][0-9][A-Z0-9]{3}[0-9]|[A-NR-Z][0-9]([A-Z][A-Z0-9]{2}[0-9]){1,2}$/.test(value)) '
'{ %><a href="https://www.uniprot.org/uniprotkb/<%= value %>" target="_blank"><%= value %></a><%'
'} else { %><textarea style="width: 60ch;"><%= value %></textarea><% } %>'
'<% } else { %><% } %>' # Output empty string if value is NaN
)
pubchem_id_formatter = HTMLTemplateFormatter(
template='<% if (value == value) { ' # Check if value is not NaN
'%><a href="https://pubchem.ncbi.nlm.nih.gov/#query=<%= value %>" '
'target="_blank"><%= value %></a>'
'<% } else { %><% } %>' # Output empty string if value is NaN
)
bool_formatters = {col: BooleanFormatter() for col in bool_cols}
float_formatters = {col: NumberFormatter(format='0.000') for col in df_html.select_dtypes('floating').columns}
other_formatters = {
'Interaction Probability': {'type': 'progress', 'max': 1.0, 'legend': True},
'Compound': image_zoom_formatter,
'Scaffold': image_zoom_formatter,
'Pharmacophore': {'type': 'executeScriptFormatter'},
'Target FASTA': {'type': 'textarea', 'width': 60},
'Target ID': uniprot_id_formatter,
'Compound ID': pubchem_id_formatter,
'Max. Tanimoto Similarity Target Ligand': pubchem_id_formatter,
'Max. Sequence Identity Ligand Target': uniprot_id_formatter,
}
formatters = {**bool_formatters, **float_formatters, **other_formatters}
# html = df.to_html(file)
# return html
report_table = pn.widgets.Tabulator(
df_html, formatters=formatters,
frozen_columns=[
'Index', 'Target ID', 'Compound ID', 'Compound'
],
disabled=True, sizing_mode='stretch_both', pagination='local', page_size=30)
for i, col in enumerate(num_cols):
cmap = sns.light_palette(num_col_colors[i], as_cmap=True)
if col not in ['Binding Affinity (IC50 [nM])']:
if col not in ['Interaction Probability']:
cmap.set_bad(color='white')
report_table.style.background_gradient(
subset=df_html.columns == col, cmap=cmap)
else:
continue
else:
cmap = cmap.reversed()
cmap.set_bad(color='white')
report_table.style.background_gradient(
subset=df_html.columns == col, cmap=cmap)
pie_charts = {}
for y in df_html.columns.intersection(['Interaction Probability', 'Binding Affinity (IC50 [nM])']):
pie_charts[y] = []
for k in [10, 30, 100]:
if k < len(df_html):
pie_charts[y].append(create_pie_chart(df_html, category=category, value=y, top_k=k))
pie_charts[y].append(create_pie_chart(df_html, category=category, value=y, top_k=len(df_html)))
# Remove keys with empty values
pie_charts = {k: v for k, v in pie_charts.items() if any(v)}
pn.extension(
css_files=[
'./static/panel.css',
],
js_files={
'3Dmol': './static/3Dmol-min.js',
'panel_custom': './static/panel.js'
}
)
template = pn.template.VanillaTemplate(
title=f'DeepSEQreen {job} Report',
sidebar=[],
favicon='deepseqreen.ico',
logo='deepseqreen.svg',
header_background='#F3F5F7',
header_color='#4372c4',
busy_indicator=None,
)
stats_pane = pn.Row()
if unique_df is not None:
unique_table = pn.widgets.Tabulator(unique_df, formatters=formatters, sizing_mode='stretch_width',
show_index=False, disabled=True,
frozen_columns=['Compound ID', 'Compound', 'Target ID'])
# if pie_charts:
# unique_table.width = 640
stats_pane.append(pn.Column(f'### {unique_entity}', unique_table))
if pie_charts:
for score_name, figure_list in pie_charts.items():
stats_pane.append(
pn.Column(f'### {category} by Top {score_name}',
pn.Tabs(*figure_list, tabs_location='above'))
# pn.Card(pn.Row(v), title=f'{category} by Top {k}')
)
if stats_pane:
template.main.append(pn.Card(stats_pane,
sizing_mode='stretch_width', title='Summary Statistics', margin=10))
template.main.append(
pn.Card(report_table, title=f'{job} Results', # width=1200,
margin=10)
)
template.save(file, resources=INLINE, title=f'DeepSEQreen {job} Report')
return file
def create_pie_chart(df, category, value, top_k):
if category not in df or value not in df:
return
top_k_df = df.nlargest(top_k, value)
category_counts = top_k_df[category].value_counts()
data = pd.DataFrame({category: category_counts.index, 'value': category_counts.values})
data['proportion'] = data['value'] / data['value'].sum()
# Merge rows with proportion less than 0.2% into one row
mask = data['proportion'] < 0.002
if any(mask):
merged_row = data[mask].sum()
merged_row[category] = '...'
data = pd.concat([data[~mask], pd.DataFrame(merged_row).T])
data['angle'] = data['proportion'] * 2 * pi
color_dict = {cat: color for cat, color in
zip(df[category].unique(),
(Category20c_20 * (len(df[category].unique()) // 20 + 1))[:len(df[category].unique())])}
color_dict['...'] = '#636363'
data['color'] = data[category].map(color_dict)
tooltips = [
(f"{category}", f"@{{{category}}}"),
("Count", "@value"),
("Percentage", "@proportion{0.0%}")
]
if category == 'Scaffold SMILES' and 'Scaffold' in df.columns:
data = data.merge(top_k_df[['Scaffold SMILES', 'Scaffold']].drop_duplicates(), how='left',
left_on='Scaffold SMILES', right_on='Scaffold SMILES')
tooltips.append(("Scaffold", "<div>@{Scaffold}{safe}</div>"))
p = figure(height=384, width=960, name=f"Top {top_k}" if top_k < len(df) else 'All', sizing_mode='stretch_height',
toolbar_location=None, tools="hover", tooltips=tooltips, x_range=(-0.4, 0.4))
def truncate_label(label, max_length=60):
return label if len(label) <= max_length else label[:max_length] + "..."
data['legend_field'] = data[category].apply(truncate_label)
p.add_layout(Legend(padding=0, margin=0), 'right')
p.wedge(x=0, y=1, radius=0.3,
start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'),
line_color="white", fill_color='color', legend_field='legend_field', source=data)
# Limit the number of legend items to 20 and add "..." if there are more than 20 items
if len(p.legend.items) > 20:
new_legend_items = p.legend.items[:20]
new_legend_items.append(LegendItem(label="..."))
p.legend.items = new_legend_items
p.legend.label_text_font_size = "10pt"
p.legend.label_text_font = "courier"
p.axis.axis_label = None
p.axis.visible = False
p.grid.grid_line_color = None
p.outline_line_width = 0
p.min_border = 0
p.margin = 0
return p
def submit_report(df, score_list, filter_list, task, progress=gr.Progress(track_tqdm=True)):
df_report = df.copy()
try:
for filter_name in filter_list:
df_report[filter_name] = df_report['Compound'].swifter.apply(
lambda x: FILTER_MAP[filter_name](x) if not pd.isna(x) else x)
for score_name in score_list:
df_report[score_name] = df_report['Compound'].swifter.apply(
lambda x: SCORE_MAP[score_name](x) if not pd.isna(x) else x)
return (create_html_report(df_report, file=None, task=task), df_report,
gr.File(visible=False), gr.File(visible=False))
except Exception as e:
gr.Warning(f'Failed to report results due to error: {str(e)}')
return None, None, None, None
def wrap_text(text, line_length=60):
if isinstance(text, str):
wrapper = textwrap.TextWrapper(width=line_length)
if text.startswith('>'):
sections = text.split('>')
wrapped_sections = []
for section in sections:
if not section:
continue
lines = section.split('\n')
seq_header = lines[0]
wrapped_seq = wrapper.fill(''.join(lines[1:]))
wrapped_sections.append(f">{seq_header}\n{wrapped_seq}")
return '\n'.join(wrapped_sections)
else:
return wrapper.fill(text)
else:
return text
def unwrap_text(text):
return text.strip.replece('\n', '')
def drug_library_from_sdf(sdf_path):
return PandasTools.LoadSDF(
sdf_path,
smilesName='X1', molColName='Compound', includeFingerprints=True
)
def process_target_library_upload(library_upload):
if library_upload.endswith('.csv'):
df = pd.read_csv(library_upload)
elif library_upload.endswith('.fasta'):
df = target_library_from_fasta(library_upload)
else:
raise gr.Error('Currently only CSV and FASTA files are supported as target libraries.')
validate_columns(df, ['X2'])
return df
def process_drug_library_upload(library_upload):
if library_upload.endswith('.csv'):
df = pd.read_csv(library_upload)
elif library_upload.endswith('.sdf'):
df = drug_library_from_sdf(library_upload)
else:
raise gr.Error('Currently only CSV and SDF files are supported as drug libraries.')
validate_columns(df, ['X1'])
return df
def target_library_from_fasta(fasta_path):
records = list(SeqIO.parse(fasta_path, "fasta"))
id2 = [record.id for record in records]
seq = [str(record.seq) for record in records]
df = pd.DataFrame({'ID2': id2, 'X2': seq})
return df
theme = gr.themes.Base(spacing_size="sm", text_size='md', font=gr.themes.GoogleFont("Roboto")).set(
background_fill_primary='#eef3f9',
background_fill_secondary='white',
checkbox_label_background_fill='#eef3f9',
checkbox_label_background_fill_hover='#dfe6f0',
checkbox_background_color='white',
checkbox_border_color='#4372c4',
border_color_primary='#4372c4',
border_color_accent='#2e6ab5',
button_primary_background_fill='#2e6ab4',
button_primary_text_color='white',
body_text_color='#28496F',
block_background_fill='#fbfcfd',
block_title_text_color='#28496F',
block_label_text_color='#28496F',
block_info_text_color='#505358',
block_border_color=None,
# input_border_color='#4372c4',
# panel_border_color='#4372c4',
input_background_fill='#F1F2F4',
)
with gr.Blocks(theme=theme, title='DeepSEQreen', css=CSS, delete_cache=(3600, 48 * 3600)) as demo:
run_state = gr.State(value=False)
screen_flag = gr.State(value=False)
identify_flag = gr.State(value=False)
infer_flag = gr.State(value=False)
with gr.Tabs() as tabs:
with gr.TabItem(label='Drug Hit Screening', id='Drug Hit Screening'):
gr.Markdown('''
# <center>Drug Hit Screening</center>
<center>
To predict interactions or binding affinities of a single target against a compound library.
</center>
''')
with gr.Row():
with gr.Column():
HelpTip(
"Enter (paste) a amino acid sequence below manually or upload a FASTA file. "
"If multiple entities are in the FASTA, only the first will be used. "
"Alternatively, enter a Uniprot ID or gene symbol with organism and click Query for "
"the sequence."
)
target_input_type = gr.Dropdown(
label='Step 1. Select Target Input Type and Input',
choices=['Sequence', 'UniProt ID', 'Gene symbol'],
info='Enter (paste) a FASTA string below manually or upload a FASTA file.',
value='Sequence',
scale=4, interactive=True
)
with gr.Row():
target_id = gr.Textbox(show_label=False, visible=False,
interactive=True, scale=4,
info='Enter a UniProt ID and query.')
target_gene = gr.Textbox(
show_label=False, visible=False,
interactive=True, scale=4,
info='Enter a gene symbol and query. The first record will be used.')
target_organism = gr.Textbox(
info='Organism scientific name (default: Homo sapiens).',
placeholder='Homo sapiens', show_label=False,
visible=False, interactive=True, scale=4, )
target_upload_btn = gr.UploadButton(label='Upload a FASTA File', type='binary',
visible=True, variant='primary',
size='lg')
target_paste_markdown = gr.Button(value='OR Paste Your Sequence Below',
variant='secondary')
target_query_btn = gr.Button(value='Query the Sequence', variant='primary',
visible=False, scale=4)
# with gr.Row():
# example_uniprot = gr.Button(value='Example: Q16539', elem_classes='example', visible=False)
# example_gene = gr.Button(value='Example: MAPK14', elem_classes='example', visible=False)
example_fasta = gr.Button(value='Example: MAPK14 (Q16539)', elem_classes='example')
target_fasta = gr.Code(label='Input or Display FASTA', interactive=True, lines=5)
# with gr.Row():
# with gr.Column():
# with gr.Column():
# gr.File(label='Example FASTA file',
# value='data/examples/MAPK14.fasta', interactive=False)
with gr.Row():
with gr.Column(min_width=200):
HelpTip(
"Click Auto-detect to identify the protein family using sequence alignment. "
"This optional step allows applying a family-specific model instead of a all-family "
"model (general). "
"Manually select general if the alignment results are unsatisfactory."
)
drug_screen_target_family = gr.Dropdown(
choices=list(TARGET_FAMILY_MAP.keys()),
value='General',
label='Step 2. Select Target Family (Optional)', interactive=True)
target_family_detect_btn = gr.Button(value='OR Let Us Auto-Detect for You',
variant='primary')
with gr.Column(min_width=200):
HelpTip(
"Interaction prediction provides you binding probability score between the target of "
"interest and each compound in the library, "
"while affinity prediction directly estimates their binding strength measured using "
"half maximal inhibitory concentration (IC<sub>50</sub>) in units of nM."
)
drug_screen_task = gr.Dropdown(
list(TASK_MAP.keys()),
label='Step 3. Select a Prediction Task',
value='Compound-Protein Interaction')
with gr.Column(min_width=200):
HelpTip(
"Select your preferred model, or click Recommend for the best-performing model based "
"on the selected task, family, and whether the target was trained. "
"Please refer to documentation for detailed benchmark results."
)
drug_screen_preset = gr.Dropdown(
list(PRESET_MAP.keys()),
label='Step 4. Select a Preset Model')
screen_preset_recommend_btn = gr.Button(
value='OR Let Us Recommend for You', variant='primary')
with gr.Row():
with gr.Column():
HelpTip(
"Select a preset compound library (e.g., DrugBank). "
"Alternatively, upload a CSV file with a column named X1 containing compound SMILES, "
"or use an SDF file (Max. 10,000 compounds per task). Example CSV and SDF files are "
"provided below and can be downloaded by clicking the lower right corner."
)
drug_library = gr.Dropdown(
label='Step 5. Select a Preset Compound Library',
choices=list(DRUG_LIBRARY_MAP.keys()))
with gr.Row():
gr.File(label='Example SDF compound library',
value='data/examples/compound_library.sdf', interactive=False)
gr.File(label='Example CSV compound library',
value='data/examples/compound_library.csv', interactive=False)
drug_library_upload_btn = gr.UploadButton(
label='OR Upload Your Own Library', variant='primary')
drug_library_upload = gr.File(label='Custom compound library file', visible=False)
with gr.Column():
HelpTip("""
<b>Max. Sequence Identity between the Input Target and Targets in the Training Set</b>:
this serves as an indicator of the predictioon applicability/reliability –
higher similarities indicate more reliable predictions (preferably > 0.85).<br>
<b>Max. Tanimoto Similarity between the Hit Compound and Known Ligands of the Input Target</b>:
this serves as an indicator of both the confidence level and novelty of the predicted hit compounds –
higher similarities suggest greater confidence, while lower Tanimoto similarities may indicate the novelty
of the identified hit compounds compared to known drugs or true interacting compounds of the input target.<br>
<b>Max. Sequence Identity between the Input Target and Known Targets of Hit Compound</b>:
this serves as an additional indicator of the confidence level of the predicted hit compounds –
higher identities usually lead to greater confidence in the predictions.<br>
""")
drug_screen_opts = gr.CheckboxGroup(
label="Step 6. Select Additional Options",
choices=DRUG_SCRENN_CPI_OPTS,
info="Experimental features - may increase the job computation time."
"See the Help Tip on the right or the Documentation for detailed explanation."
)
with gr.Row():
with gr.Column():
drug_screen_email = gr.Textbox(
label='Step 7. Input Your Email Address (Optional)',
info="Your email address will be used to notify you of the status of your job. "
"If you cannot receive the email, please check your spam/junk folder."
)
with gr.Row(visible=True):
with gr.Row():
drug_screen_clr_btn = gr.ClearButton(size='lg')
drug_screen_btn = gr.Button(value='SUBMIT THE SCREENING JOB', variant='primary', size='lg')
screen_data_for_predict = gr.File(visible=False, file_count="single", type='filepath')
with gr.TabItem(label='Target Protein Identification', id='Target Protein Identification'):
gr.Markdown('''
# <center>Target Protein Identification</center>
<center>
To predict interactions or binding affinities of a single compound against a protein library.
</center>
''')
with gr.Column() as identify_page:
with gr.Row():
with gr.Column():
HelpTip(
"Enter (paste) a compound SMILES below manually or upload a SDF file. "
"If multiple entities are in the SDF, only the first will be used. "
"SMILES can be obtained by searching for the compound of interest in databases such "
"as NCBI, PubChem and and ChEMBL."
)
compound_type = gr.Dropdown(
label='Step 1. Select Compound Input Type and Input',
choices=['SMILES', 'SDF'],
info='Enter (paste) an SMILES string or upload an SDF file to convert to SMILES.',
value='SMILES',
interactive=True)
compound_upload_btn = gr.UploadButton(
label='OR Upload a SDF File', variant='primary', type='binary', visible=False)
compound_smiles = gr.Code(label='Input or Display Compound SMILES', interactive=True, lines=5)
example_drug = gr.Button(value='Example: Aspirin', elem_classes='example')
with gr.Row():
with gr.Column(visible=True):
HelpTip(
"By default, models trained on all protein families (general) will be applied. "
"If you upload a target library containing proteins all in the same family, "
"you may manually select a Target Family."
)
target_identify_target_family = gr.Dropdown(
choices=['Family-Specific Auto-Recommendation'] + list(TARGET_FAMILY_MAP.keys()),
value='Family-Specific Auto-Recommendation',
label='Step 2. Select Target Family')
with gr.Column():
HelpTip(
"Interaction prediction provides you binding probability score between the target of "
"interest and each compound in the library, while affinity prediction directly "
"estimates their binding strength measured using "
"half maximal inhibitory concentration (IC<sub>50</sub>) in units of nM."
)
target_identify_task = gr.Dropdown(
list(TASK_MAP.keys()),
label='Step 3. Select a Prediction Task',
value='Compound-Protein Interaction')
with gr.Column():
HelpTip(
"Select your preferred model, or click Recommend for the best-performing model based "
"on the selected task and whether the compound was trained. By default, General-trained "
"model is used for Target Protein Identification. "
"Please refer to the documentation for detailed benchmark results."
)
target_identify_preset = gr.Dropdown(
choices=['Family-Specific Auto-Recommendation'] + list(PRESET_MAP.keys()),
value='Family-Specific Auto-Recommendation',
label='Step 4. Select a Preset Model')
identify_preset_recommend_btn = gr.Button(value='OR Let Us Recommend for You',
variant='primary')
with gr.Row():
with gr.Column():
HelpTip(
"Select a preset target library (e.g., ChEMBL33_human_proteins). "
"Alternatively, upload a CSV file with a column named X2 containing target protein "
"sequences, or use an FASTA file (Max. 10,000 targets per task). "
"Example CSV and SDF files are provided below "
"and can be downloaded by clicking the lower right corner."
)
target_library = gr.Dropdown(
label='Step 5. Select a Preset Target Library',
choices=list(TARGET_LIBRARY_MAP.keys()))
with gr.Row():
gr.File(label='Example FASTA target library',
value='data/examples/target_library.fasta', interactive=False)
gr.File(label='Example CSV target library',
value='data/examples/target_library.csv', interactive=False)
target_library_upload_btn = gr.UploadButton(
label='OR Upload Your Own Library', variant='primary')
target_library_upload = gr.File(label='Custom target library file', visible=False)
with gr.Column():
HelpTip("""
<b>Max. Tanimoto Similarity between the Input Compound and Compounds in the Training Set</b>:
this serves as an indicator of prediction applicability and reliability –
higher similarities indicates more reliable predictions (ideally > 0.85).<br>
<b>Max. Sequence Identity between the Identified Target and Known Targets of the Input Compound</b>:
this serves as an indicator of prediction confidence for the potential targets –
higher similarities typically imply higher confidence levels.<br>
<b>Max. Tanimoto Similarity between the Input Compound and Known Ligands of the Identified Target</b>:
this serves as an additional indicator of the confidence level in the predicted potential targets –
higher similarities usually correspond to greater prediction confidence.<br>
""")
target_identify_opts = gr.CheckboxGroup(
choices=TARGET_IDENTIFY_CPI_OPTS,
label='Step 6. Select Additional Options',
info="Experimental features - may increase the job computation time. "
"See the Help Tip on the right or the Documentation for detailed explanation."
)
with gr.Row():
with gr.Column():
target_identify_email = gr.Textbox(
label='Step 7. Input Your Email Address (Optional)',
info="Your email address will be used to notify you of the status of your job. "
"If you cannot receive the email, please check your spam/junk folder."
)
with gr.Row(visible=True):
target_identify_clr_btn = gr.ClearButton(size='lg')
target_identify_btn = gr.Button(value='SUBMIT THE IDENTIFICATION JOB', variant='primary',
size='lg')
identify_data_for_predict = gr.File(visible=False, file_count="single", type='filepath')
with gr.TabItem(label='Interaction Pair Inference', id='Interaction Pair Inference'):
gr.Markdown('''
# <center>Interaction Pair Inference</center>
<center>To predict interactions or binding affinities between up to
10,000 paired compound-protein data.</center>
''')
HelpTip(
"A custom interation pair dataset can be a CSV file with 2 required columns "
"(X1 for smiles and X2 for sequences) "
"and optionally 2 ID columns (ID1 for compound ID and ID2 for target ID), "
"or generated from a FASTA file containing multiple "
"sequences and a SDF file containing multiple compounds. "
"Currently, a maximum of 10,000 pairs is supported, "
"which means that the size of CSV file or "
"the product of the two library sizes should not exceed 10,000."
)
infer_type = gr.Dropdown(
choices=['Upload a CSV file containing paired compound-protein data',
'Upload a compound library and a target library'],
label='Step 1. Select Pair Input Type and Input',
value='Upload a CSV file containing paired compound-protein data')
with gr.Column() as pair_upload:
gr.File(
label="Example CSV dataset",
value="data/examples/interaction_pair_inference.csv",
interactive=False
)
with gr.Row():
infer_csv_prompt = gr.Button(
value="Upload Your Own Dataset Below",
variant='secondary')
with gr.Column():
infer_pair = gr.File(
label='Upload CSV File Containing Paired Records',
file_count="single",
type='filepath',
visible=True
)
with gr.Column(visible=False) as pair_generate:
with gr.Row():
gr.File(
label='Example SDF compound library',
value='data/examples/compound_library.sdf',
interactive=False
)
gr.File(
label='Example FASTA target library',
value='data/examples/target_library.fasta',
interactive=False
)
with gr.Row():
gr.File(
label='Example CSV compound library',
value='data/examples/compound_library.csv',
interactive=False
)
gr.File(
label='Example CSV target library',
value='data/examples/target_library.csv',
interactive=False
)
with gr.Row():
infer_library_prompt = gr.Button(
value="Upload Your Own Libraries Below",
visible=False,
variant='secondary'
)
with gr.Row():
infer_drug = gr.File(
label='Upload SDF/CSV File Containing Multiple Compounds',
file_count="single",
type='filepath'
)
infer_target = gr.File(
label='Upload FASTA/CSV File Containing Multiple Targets',
file_count="single",
type='filepath'
)
with gr.Row():
with gr.Column(min_width=200):
HelpTip(
"By default, models trained on all protein families (general) will be applied. "
"If the proteins in the target library of interest "
"all belong to the same protein family, manually selecting the family is supported."
)
pair_infer_target_family = gr.Dropdown(
choices=list(TARGET_FAMILY_MAP.keys()),
value='General',
label='Step 2. Select Target Family (Optional)'
)
with gr.Column(min_width=200):
HelpTip(
"Interaction prediction provides you binding probability score "
"between the target of interest and each compound in the library, "
"while affinity prediction directly estimates their binding strength "
"measured using half maximal inhibitory concentration (IC<sub>50</sub>) in units of nM."
)
pair_infer_task = gr.Dropdown(
list(TASK_MAP.keys()),
label='Step 3. Select a Prediction Task',
value='Compound-Protein Interaction'
)
with gr.Column(min_width=200):
HelpTip(
"Select your preferred model. Please refer to documentation for detailed benchmark results."
)
pair_infer_preset = gr.Dropdown(
list(PRESET_MAP.keys()),
label='Step 4. Select a Preset Model'
)
# infer_preset_recommend_btn = gr.Button(value='OR Let Us Recommend for You',
# variant='primary')
pair_infer_opts = gr.CheckboxGroup(visible=False)
with gr.Row():
pair_infer_email = gr.Textbox(
label='Step 5. Input Your Email Address (Optional)',
info="Your email address will be used to notify you of the status of your job. "
"If you cannot receive the email, please check your spam/junk folder.")
with gr.Row(visible=True):
pair_infer_clr_btn = gr.ClearButton(size='lg')
pair_infer_btn = gr.Button(value='SUBMIT THE INFERENCE JOB', variant='primary', size='lg')
infer_data_for_predict = gr.File(file_count="single", type='filepath', visible=False)
with gr.TabItem(label='Chemical Property Report', id='Chemical Property Report'):
gr.Markdown('''
# <center>Chemical Property Report</center>
To compute chemical properties for the predictions of Drug Hit Screening,
Target Protein Identification, and Interaction Pair Inference.
You may also upload your own dataset using a CSV file containing
one required column `X1` for compound SMILES.
The page shows only a preview report displaying at most 30 records
(with top predicted CPI/CPA if reporting results from a prediction job).
Please first `Preview` the report, then `Generate` and download a CSV report
or an interactive HTML report below if you wish to access the full report.
''')
raw_df = gr.State(value=pd.DataFrame())
report_df = gr.State(value=pd.DataFrame())
with gr.Row():
with gr.Column(scale=1):
file_for_report = gr.File(interactive=True, type='filepath')
report_task = gr.Dropdown(list(TASK_MAP.keys()), visible=False,
value='Compound-Protein Interaction',
label='Specify the Task Labels in the Uploaded Dataset')
with gr.Column(scale=2):
with gr.Row():
scores = gr.CheckboxGroup(list(SCORE_MAP.keys()), label='Compound Scores')
filters = gr.CheckboxGroup(list(FILTER_MAP.keys()), label='Compound Filters')
with gr.Accordion('Report Generate Options', open=False):
with gr.Row():
csv_sep = gr.Radio(label='CSV Delimiter',
choices=['Comma', 'Tab'], value='Comma')
html_opts = gr.CheckboxGroup(label='HTML Report Options',
choices=[
'Exclude Molecular Graph',
'Exclude Scaffold Graph',
'Exclude Pharmacophore 3D'
])
with gr.Row():
report_clr_btn = gr.ClearButton(size='lg')
analyze_btn = gr.Button('Calculate Properties and Preview', variant='primary',
size='lg', interactive=False)
with gr.Row():
with gr.Column(scale=3):
html_report = gr.HTML() # label='Results', visible=True)
ranking_pie_chart = gr.Plot(visible=False)
with gr.Row():
with gr.Column():
csv_generate = gr.Button(value='Generate CSV Report',
interactive=False, variant='primary')
csv_download_file = gr.File(label='Download CSV Report', visible=False)
with gr.Column():
html_generate = gr.Button(value='Generate HTML Report',
interactive=False, variant='primary')
html_download_file = gr.File(label='Download HTML Report', visible=False)
with gr.TabItem(label='Prediction Status Lookup', id='Prediction Status Lookup'):
gr.Markdown('''
# <center>Prediction Status Lookup</center>
To check the status of an in-progress or historical job using the job ID and retrieve the predictions
if the job has completed. Note that predictions are only kept for 48 hours upon job completion.
You will be redirected to Chemical Property Report for carrying out further analysis and
generating the full report when the job is done. If the Lookup fails to respond, please wait for a
few minutes and refresh the page to try again.
''')
with gr.Column():
pred_lookup_id = gr.Textbox(
label='Input Your Job ID', placeholder='e.g., e9dfd149-3f5c-48a6-b797-c27d027611ac',
info="Your job ID is a UUID4 string that you receive after submitting a job on the "
"page or in the email notification.")
pred_lookup_btn = gr.Button(value='Lookup the Job Status', variant='primary', visible=True)
pred_lookup_stop_btn = gr.Button(value='Stop Tracking', variant='stop', visible=False)
pred_lookup_status = gr.Markdown()
# retrieve_email = gr.Textbox(label='Step 2. Input Your Email Address', placeholder='e.g.,
def target_input_type_select(input_type):
match input_type:
case 'UniProt ID':
return [gr.Dropdown(info=''),
gr.UploadButton(visible=False),
gr.Textbox(visible=True, value=''),
gr.Textbox(visible=False, value=''),
gr.Textbox(visible=False, value=''),
gr.Button(visible=True),
gr.Code(value=''),
gr.Button(visible=False)]
case 'Gene symbol':
return [gr.Dropdown(info=''),
gr.UploadButton(visible=False),
gr.Textbox(visible=False, value=''),
gr.Textbox(visible=True, value=''),
gr.Textbox(visible=True, value=''),
gr.Button(visible=True),
gr.Code(value=''),
gr.Button(visible=False)]
case 'Sequence':
return [gr.Dropdown(info='Enter (paste) a FASTA string below manually or upload a FASTA file.'),
gr.UploadButton(visible=True),
gr.Textbox(visible=False, value=''),
gr.Textbox(visible=False, value=''),
gr.Textbox(visible=False, value=''),
gr.Button(visible=False),
gr.Code(value=''),
gr.Button(visible=True)]
target_input_type.select(
fn=target_input_type_select,
inputs=target_input_type,
outputs=[
target_input_type, target_upload_btn,
target_id, target_gene, target_organism, target_query_btn,
target_fasta, target_paste_markdown
],
show_progress='hidden'
)
def uniprot_query(input_type, uid, gene, organism='Human'):
uniprot_endpoint = 'https://rest.uniprot.org/uniprotkb/{query}'
fasta_rec = ''
match input_type:
case 'UniProt ID':
query = f"{uid.strip()}.fasta"
case 'Gene symbol':
organism = organism if organism else 'Human'
query = f'search?query=organism_name:{organism.strip()}+AND+gene:{gene.strip()}&format=fasta'
try:
fasta = session.get(uniprot_endpoint.format(query=query))
fasta.raise_for_status()
if fasta.text:
fasta_rec = next(SeqIO.parse(io.StringIO(fasta.text), format='fasta'))
fasta_rec = f">{fasta_rec.description}\n{fasta_rec.seq}"
except Exception as e:
raise gr.Warning(f"Failed to query FASTA from UniProt database due to {str(e)}")
finally:
return fasta_rec
def process_fasta_upload(fasta_upload):
fasta = ''
try:
fasta = fasta_upload.decode()
except Exception as e:
gr.Warning(f"Please upload a valid FASTA file. Error: {str(e)}")
return fasta
target_upload_btn.upload(
fn=process_fasta_upload, inputs=target_upload_btn, outputs=target_fasta
).then(
fn=wrap_text, inputs=target_fasta, outputs=target_fasta, show_progress='hidden'
)
target_query_btn.click(
fn=uniprot_query, inputs=[target_input_type, target_id, target_gene, target_organism], outputs=target_fasta
).then(
fn=wrap_text, inputs=target_fasta, outputs=target_fasta, show_progress='hidden'
)
def target_family_detect(fasta, progress=gr.Progress(track_tqdm=True)):
try:
aligner = PairwiseAligner(mode='local')
alignment_df = get_fasta_family_map()
processed_fasta = process_target_fasta(fasta)
# Check for an exact match first
exact_match = alignment_df[alignment_df['X2'] == processed_fasta]
if not exact_match.empty:
row = exact_match.iloc[0]
family = str(row['Target Family']).title()
return gr.Dropdown(
value=family,
info=f"Reason: Exact match found with {row['ID2']} from family {family}")
# If no exact match, then calculate alignment score
def align_score(query):
alignment = aligner.align(processed_fasta, query)
return alignment.score / max(len(processed_fasta), len(query))
alignment_df['score'] = alignment_df['X2'].swifter.apply(align_score)
row = alignment_df.loc[alignment_df['score'].idxmax()]
family = str(row['Target Family']).title()
return gr.Dropdown(value=family,
info=f"Reason: Best sequence identity ({row['score']}) "
f"with {row['ID2']} from family {family}")
except Exception as e:
gr.Warning("Failed to detect the protein family due to error: " + str(e))
target_family_detect_btn.click(fn=target_family_detect, inputs=target_fasta, outputs=drug_screen_target_family)
# target_fasta.focus(fn=wrap_text, inputs=target_fasta, outputs=target_fasta, show_progress='hidden')
target_fasta.blur(fn=wrap_text, inputs=target_fasta, outputs=target_fasta, show_progress='hidden')
drug_library_upload_btn.upload(fn=lambda x: [
x.name, gr.Dropdown(value=Path(x.name).name, choices=list(DRUG_LIBRARY_MAP.keys()) + [Path(x.name).name])
], inputs=drug_library_upload_btn, outputs=[drug_library_upload, drug_library])
drug_screen_task.select(
fn=lambda task, opts: gr.CheckboxGroup(choices=DRUG_SCRENN_CPA_OPTS)
if task == 'Compound-Protein Binding Affinity' else gr.CheckboxGroup(choices=DRUG_SCRENN_CPI_OPTS),
inputs=[drug_screen_task, drug_screen_opts], outputs=drug_screen_opts,
show_progress='hidden'
)
target_identify_task.select(
fn=lambda task, opts: gr.CheckboxGroup(choices=TARGET_IDENTIFY_CPA_OPTS)
if task == 'Compound-Protein Binding Affinity' else gr.CheckboxGroup(choices=DRUG_SCRENN_CPI_OPTS),
inputs=[target_identify_task, target_identify_opts], outputs=target_identify_opts,
show_progress='hidden'
)
def example_fill(input_type):
return {target_id: 'Q16539',
target_gene: 'MAPK14',
target_organism: 'Human',
target_fasta: """
>sp|Q16539|MK14_HUMAN Mitogen-activated protein kinase 14 OS=Homo sapiens OX=9606 GN=MAPK14 PE=1 SV=3
MSQERPTFYRQELNKTIWEVPERYQNLSPVGSGAYGSVCAAFDTKTGLRVAVKKLSRPFQ
SIIHAKRTYRELRLLKHMKHENVIGLLDVFTPARSLEEFNDVYLVTHLMGADLNNIVKCQ
KLTDDHVQFLIYQILRGLKYIHSADIIHRDLKPSNLAVNEDCELKILDFGLARHTDDEMT
GYVATRWYRAPEIMLNWMHYNQTVDIWSVGCIMAELLTGRTLFPGTDHIDQLKLILRLVG
TPGAELLKKISSESARNYIQSLTQMPKMNFANVFIGANPLAVDLLEKMLVLDSDKRITAA
QALAHAYFAQYHDPDDEPVADPYDQSFESRDLLIDEWKSLTYDEVISFVPPPLDQEEMES
"""}
example_fasta.click(fn=example_fill, inputs=target_input_type, outputs=[
target_id, target_gene, target_organism, target_fasta], show_progress='hidden')
def screen_recommend_model(fasta, family, task):
task = TASK_MAP[task]
score = TASK_METRIC_MAP[task]
benchmark_df = pd.read_csv(f'data/benchmarks/{task}_test_metrics.csv')
if not fasta:
gr.Warning('Please enter a valid FASTA for model recommendation.')
return [None, family]
if family == 'General':
seen_targets = get_seen_fastas('General', task)['X2'].values
if process_target_fasta(fasta) in seen_targets:
scenario = "Seen Target"
else:
scenario = "Unseen Target"
filtered_df = benchmark_df[(benchmark_df['Family'] == 'All Families')
& (benchmark_df['Scenario'] == scenario)
& (benchmark_df['Type'] == 'General')]
else:
seen_targets_general = get_seen_fastas('General', task)['X2'].values
if process_target_fasta(fasta) in seen_targets_general:
scenario_general = "Seen Target"
else:
scenario_general = "Unseen Target"
seen_targets_family = get_seen_fastas(family, task)['X2'].values
if process_target_fasta(fasta) in seen_targets_family:
scenario_family = "Seen Target"
else:
scenario_family = "Unseen Target"
filtered_df_general = benchmark_df[(benchmark_df['Family'] == family)
& (benchmark_df['Scenario'] == scenario_general)
& (benchmark_df['Type'] == 'General')]
filtered_df_family = benchmark_df[(benchmark_df['Family'] == family)
& (benchmark_df['Scenario'] == scenario_family)
& (benchmark_df['Type'] == 'Family')]
filtered_df = pd.concat([filtered_df_general, filtered_df_family])
row = filtered_df.loc[filtered_df[score].idxmax()]
if row['Scenario'] == 'Seen Target':
scenario = "Seen Target (>=0.85 sequence identity)"
elif row['Scenario'] == 'Unseen Target':
scenario = "Unseen Target (<0.85 sequence identity)"
return {drug_screen_preset:
gr.Dropdown(value=row['Model'],
info=f"Reason: {row['Scenario']} in training; we recommend the {row['Type']}-trained "
f"model with the best {score} in the {scenario} scenario on {row['Family']}."),
drug_screen_target_family:
gr.Dropdown(value='General') if row['Type'] == 'General' else gr.Dropdown(value=family)}
screen_preset_recommend_btn.click(
fn=screen_recommend_model,
inputs=[target_fasta, drug_screen_target_family, drug_screen_task],
outputs=[drug_screen_preset, drug_screen_target_family],
show_progress='hidden'
)
def compound_input_type_select(input_type):
match input_type:
case 'SMILES':
return gr.Button(visible=False)
case 'SDF':
return gr.Button(visible=True)
compound_type.select(fn=compound_input_type_select,
inputs=compound_type, outputs=compound_upload_btn, show_progress='hidden')
def compound_upload_process(input_type, input_upload):
smiles = ''
try:
match input_type:
case 'SMILES':
smiles = input_upload.decode()
case 'SDF':
suppl = Chem.ForwardSDMolSupplier(io.BytesIO(input_upload))
smiles = Chem.MolToSmiles(next(suppl))
except Exception as e:
gr.Warning(f"Please upload a valid {input_type} file. Error: {str(e)}")
return smiles
compound_upload_btn.upload(fn=compound_upload_process,
inputs=[compound_type, compound_upload_btn],
outputs=compound_smiles)
example_drug.click(fn=lambda: 'CC(=O)Oc1ccccc1C(=O)O', outputs=compound_smiles, show_progress='hidden')
target_library_upload_btn.upload(fn=lambda x: [
x.name, gr.Dropdown(value=Path(x.name).name, choices=list(TARGET_LIBRARY_MAP.keys()) + [Path(x.name).name])
], inputs=target_library_upload_btn, outputs=[target_library_upload, target_library])
def identify_recommend_model(smiles, family, task):
task = TASK_MAP[task]
score = TASK_METRIC_MAP[task]
benchmark_df = pd.read_csv(f'data/benchmarks/{task}_test_metrics.csv')
if not smiles:
gr.Warning('Please enter a valid SMILES for model recommendation.')
return None
if family == 'Family-Specific Auto-Recommendation':
return 'Family-Specific Auto-Recommendation'
if family == 'General':
seen_compounds = pd.read_csv(
f'data/benchmarks/seen_compounds/all_families_full_{task.lower()}_random_split.csv')
family = 'All Families'
else:
seen_compounds = pd.read_csv(
f'data/benchmarks/seen_compounds/{TARGET_FAMILY_MAP[family.title()]}_{task.lower()}_random_split.csv')
if rdkit_canonicalize(smiles) in seen_compounds['X1'].values:
scenario = "Seen Compound"
else:
scenario = "Unseen Compound"
filtered_df = benchmark_df[(benchmark_df['Family'] == family)
& (benchmark_df['Scenario'] == scenario)
& (benchmark_df['Type'] == 'General')]
row = filtered_df.loc[filtered_df[score].idxmax()]
return gr.Dropdown(value=row['Model'],
info=f"Reason: {scenario} in training; choosing the model "
f"with the best {score} in the {scenario} scenario.")
identify_preset_recommend_btn.click(fn=identify_recommend_model,
inputs=[compound_smiles, target_identify_target_family, target_identify_task],
outputs=target_identify_preset, show_progress='hidden')
def infer_type_change(upload_type):
match upload_type:
case "Upload a compound library and a target library":
return {
pair_upload: gr.Column(visible=False),
pair_generate: gr.Column(visible=True),
infer_pair: None,
infer_drug: None,
infer_target: None,
infer_csv_prompt: gr.Button(visible=False),
infer_library_prompt: gr.Button(visible=True),
}
case "Upload a CSV file containing paired compound-protein data":
return {
pair_upload: gr.Column(visible=True),
pair_generate: gr.Column(visible=False),
infer_pair: None,
infer_drug: None,
infer_target: None,
infer_csv_prompt: gr.Button(visible=True),
infer_library_prompt: gr.Button(visible=False),
}
infer_type.select(fn=infer_type_change, inputs=infer_type,
outputs=[pair_upload, pair_generate, infer_pair, infer_drug, infer_target,
infer_csv_prompt, infer_library_prompt],
show_progress='hidden')
def common_input_validate(state, preset, email, request):
gr.Info('Start processing inputs...')
if not preset:
raise gr.Error('Please select a model.')
if email:
try:
email_info = validate_email(email, check_deliverability=False)
email = email_info.normalized
except EmailNotValidError as e:
raise gr.Error(f"Invalid email address: {str(e)}.")
if state:
raise gr.Error(f"You already have a running prediction job (ID: {state['id']}) under this session. "
"Please wait for it to complete before submitting another job.")
if check := check_user_running_job(email, request):
raise gr.Error(check)
return state, preset, email
def common_job_initiate(job_id, job_type, email, request, task):
gr.Info('Finished processing inputs. Initiating the prediction job... '
'You will be redirected to Prediction Status Lookup once the job has been submitted.')
job_info = {'id': job_id,
'type': job_type,
'task': task,
'status': 'RUNNING',
'email': email,
'ip': request.headers.get('x-forwarded-for', request.client.host),
'cookies': dict(request.cookies),
'start_time': time(),
'end_time': None,
'expiry_time': None,
'error': None}
# db.insert(job_info)
return job_info
def drug_screen_validate(fasta, library, library_upload, preset, task, email, state,
request: gr.Request, progress=gr.Progress(track_tqdm=True)):
state, preset, email = common_input_validate(state, preset, email, request)
fasta = process_target_fasta(fasta)
err = validate_seq_str(fasta, FASTA_PAT)
if err:
raise gr.Error(f'Found error(s) in your Target FASTA input: {err}')
if not library:
raise gr.Error('Please select or upload a compound library.')
if library in DRUG_LIBRARY_MAP.keys():
screen_df = pd.read_csv(Path('data/drug_libraries', DRUG_LIBRARY_MAP[library]))
else:
screen_df = process_drug_library_upload(library_upload)
if len(screen_df) >= DATASET_MAX_LEN:
raise gr.Error(f'The uploaded compound library has more records '
f'than the allowed maximum {DATASET_MAX_LEN}.')
screen_df['X2'] = fasta
job_id = str(uuid4())
temp_file = Path(f'{SERVER_DATA_DIR}/{job_id}_input.csv').resolve()
screen_df.to_csv(temp_file, index=False, na_rep='')
if temp_file.is_file():
job_info = common_job_initiate(job_id, 'Drug Hit Screening', email, request, task)
return {screen_data_for_predict: str(temp_file),
run_state: job_info}
else:
raise gr.Error('System failed to create temporary files. Please try again later.')
def target_identify_validate(smiles, library, library_upload, preset, task, email, state,
request: gr.Request, progress=gr.Progress(track_tqdm=True)):
state, preset, email = common_input_validate(state, preset, email, request)
smiles = smiles.strip()
err = validate_seq_str(smiles, SMILES_PAT)
if err:
raise gr.Error(f'Found error(s) in your Compound SMILES input: {err}')
if not library:
raise gr.Error('Please select or upload a target library.')
if library in TARGET_LIBRARY_MAP.keys():
identify_df = pd.read_csv(Path('data/target_libraries', TARGET_LIBRARY_MAP[library]))
else:
identify_df = process_target_library_upload(library_upload)
if len(identify_df) >= DATASET_MAX_LEN:
raise gr.Error(f'The uploaded target library has more records '
f'than the allowed maximum {DATASET_MAX_LEN}.')
identify_df['X1'] = smiles
job_id = str(uuid4())
temp_file = Path(f'{SERVER_DATA_DIR}/{job_id}_input.csv').resolve()
identify_df.to_csv(temp_file, index=False, na_rep='')
if temp_file.is_file():
job_info = common_job_initiate(job_id, 'Target Protein Identification', email, request, task)
return {identify_data_for_predict: str(temp_file),
run_state: job_info}
else:
raise gr.Error('System failed to create temporary files. Please try again later.')
def pair_infer_validate(drug_target_pair_upload, drug_upload, target_upload, preset, task, email, state,
request: gr.Request, progress=gr.Progress(track_tqdm=True)):
state, preset, email = common_input_validate(state, preset, email, request)
job_id = str(uuid4())
if drug_target_pair_upload:
infer_df = pd.read_csv(drug_target_pair_upload)
validate_columns(infer_df, ['X1', 'X2'])
infer_df['X1_ERR'] = infer_df['X1'].swifter.apply(
validate_seq_str, regex=SMILES_PAT)
if not infer_df['X1_ERR'].isna().all():
raise ValueError(
f"Encountered invalid SMILES:\n{infer_df[~infer_df['X1_ERR'].isna()][['X1', 'X1_ERR']]}")
infer_df['X2_ERR'] = infer_df['X2'].swifter.apply(
validate_seq_str, regex=FASTA_PAT)
if not infer_df['X2_ERR'].isna().all():
raise ValueError(
f"Encountered invalid FASTA:\n{infer_df[~infer_df['X2_ERR'].isna()][['X2', 'X2_ERR']]}")
temp_file = Path(drug_target_pair_upload).resolve()
elif drug_upload and target_upload:
drug_df = process_drug_library_upload(drug_upload)
target_df = process_target_library_upload(target_upload)
drug_df.drop_duplicates(subset=['X1'], inplace=True)
target_df.drop_duplicates(subset=['X2'], inplace=True)
infer_df = pd.DataFrame(list(itertools.product(drug_df['X1'], target_df['X2'])),
columns=['X1', 'X2'])
infer_df = infer_df.merge(drug_df, on='X1').merge(target_df, on='X2')
if len(infer_df) >= DATASET_MAX_LEN:
raise gr.Error(f'The uploaded/generated compound-protein pair dataset has more records '
f'than the allowed maximum {DATASET_MAX_LEN}.')
temp_file = Path(f'{SERVER_DATA_DIR}/{job_id}_input.csv').resolve()
infer_df.to_csv(temp_file, index=False, na_rep='')
else:
raise gr.Error('Should upload a compound-protein pair dataset, or '
'upload both a compound library and a target library.')
if temp_file.is_file():
job_info = common_job_initiate(job_id, 'Interaction Pair Inference', email, request, task)
return {infer_data_for_predict: str(temp_file),
run_state: job_info}
else:
raise gr.Error('System failed to create temporary files. Please try again later.')
def fill_job_id(job_info):
try:
return job_info['id']
except Exception as e:
gr.Warning(f'Failed to fetch job ID due to error: {str(e)}')
return ''
drug_screen_click = drug_screen_btn.click(
fn=drug_screen_validate,
inputs=[target_fasta, drug_library, drug_library_upload, drug_screen_preset, drug_screen_task,
drug_screen_email, run_state],
outputs=[screen_data_for_predict, run_state],
concurrency_limit=2,
)
drug_screen_lookup = drug_screen_click.success(
fn=lambda: gr.Tabs(selected='Prediction Status Lookup'), outputs=[tabs],
).then(
fn=fill_job_id, inputs=[run_state], outputs=[pred_lookup_id]
).then(
fn=lookup_job,
inputs=[pred_lookup_id],
outputs=[pred_lookup_status, pred_lookup_btn, pred_lookup_stop_btn, tabs, file_for_report],
show_progress='minimal',
concurrency_limit=100,
)
# drug_screen_click.success(
# fn=send_email,
# inputs=[run_state]
# )
drug_screen_click.success(
fn=submit_predict,
inputs=[screen_data_for_predict, drug_screen_task, drug_screen_preset,
drug_screen_target_family, drug_screen_opts, run_state, ],
outputs=[run_state, ]
)
drug_screen_clr_btn.click(
lambda: ['General'] + [[]] + [None] * 5,
outputs=[drug_screen_target_family, drug_screen_opts,
target_fasta, drug_screen_preset, drug_library, drug_library_upload, drug_screen_email],
show_progress='hidden'
)
target_identify_clr_btn.click(
lambda: ['General'] + [[]] + [None] * 5,
outputs=[target_identify_target_family, target_identify_opts,
compound_smiles, target_identify_preset, target_library, target_library_upload, target_identify_email],
show_progress='hidden'
)
pair_infer_clr_btn.click(
lambda: ['General'] + [None] * 5,
outputs=[pair_infer_target_family,
infer_pair, infer_drug, infer_target, pair_infer_preset, pair_infer_email],
show_progress='hidden'
)
report_clr_btn.click(
lambda: [[]] * 3 + [None] * 3 +
[gr.Button(interactive=False)] * 3 +
[gr.File(visible=False, value=None)] * 2 +
[gr.Dropdown(visible=False, value=None), gr.HTML(value='')],
outputs=[
scores, filters, html_opts,
file_for_report, raw_df, report_df,
csv_generate, html_generate, analyze_btn, csv_download_file, html_download_file, report_task, html_report
],
show_progress='hidden'
)
def update_preset(family, preset):
if family == 'Family-Specific Auto-Recommendation':
return 'Family-Specific Auto-Recommendation'
elif preset == 'Family-Specific Auto-Recommendation':
return None
else:
return preset
def update_family(family, preset):
if preset == 'Family-Specific Auto-Recommendation':
return 'Family-Specific Auto-Recommendation'
elif family == 'Family-Specific Auto-Recommendation':
return None
else:
return family
target_identify_target_family.change(
fn=update_preset, inputs=[target_identify_target_family, target_identify_preset],
outputs=target_identify_preset, show_progress='hidden')
target_identify_preset.change(
fn=update_family, inputs=[target_identify_target_family, target_identify_preset],
outputs=target_identify_target_family, show_progress='hidden')
target_identify_click = target_identify_btn.click(
fn=target_identify_validate,
inputs=[compound_smiles, target_library, target_library_upload, target_identify_preset, target_identify_task,
target_identify_email, run_state],
outputs=[identify_data_for_predict, run_state],
concurrency_limit=2,
)
target_identify_lookup = target_identify_click.success(
fn=lambda: gr.Tabs(selected='Prediction Status Lookup'), outputs=[tabs],
).then(
fn=fill_job_id, inputs=[run_state], outputs=[pred_lookup_id]
).then(
fn=lookup_job,
inputs=[pred_lookup_id],
outputs=[pred_lookup_status, pred_lookup_btn, pred_lookup_stop_btn, tabs, file_for_report],
show_progress='minimal',
concurrency_limit=100
)
# target_identify_click.success(
# fn=send_email,
# inputs=[run_state]
# )
target_identify_click.success(
fn=submit_predict,
inputs=[identify_data_for_predict, target_identify_task, target_identify_preset,
target_identify_target_family, target_identify_opts, run_state, ], # , target_identify_email],
outputs=[run_state, ]
)
pair_infer_click = pair_infer_btn.click(
fn=pair_infer_validate,
inputs=[infer_pair, infer_drug, infer_target, pair_infer_preset, pair_infer_task,
pair_infer_email, run_state],
outputs=[infer_data_for_predict, run_state],
concurrency_limit=2,
)
pair_infer_lookup = pair_infer_click.success(
fn=lambda: gr.Tabs(selected='Prediction Status Lookup'), outputs=[tabs],
).then(
fn=fill_job_id, inputs=[run_state], outputs=[pred_lookup_id]
).then(
fn=lookup_job,
inputs=[pred_lookup_id],
outputs=[pred_lookup_status, pred_lookup_btn, pred_lookup_stop_btn, tabs, file_for_report],
show_progress='minimal',
concurrency_limit=100
)
# pair_infer_click.success(
# fn=send_email,
# inputs=[run_state]
# )
pair_infer_click.success(
fn=submit_predict,
inputs=[infer_data_for_predict, pair_infer_task, pair_infer_preset,
pair_infer_target_family, pair_infer_opts, run_state, ], # , pair_infer_email],
outputs=[run_state, ]
)
pred_lookup_click = pred_lookup_btn.click(
fn=lookup_job,
inputs=[pred_lookup_id],
outputs=[pred_lookup_status, pred_lookup_btn, pred_lookup_stop_btn, tabs, file_for_report],
show_progress='minimal',
cancels=[drug_screen_lookup, target_identify_lookup, pair_infer_lookup],
concurrency_limit=100,
)
pred_lookup_stop_btn.click(
fn=lambda: [gr.Button(visible=True), gr.Button(visible=False)],
outputs=[pred_lookup_btn, pred_lookup_stop_btn],
cancels=[pred_lookup_click, drug_screen_lookup, target_identify_lookup, pair_infer_lookup],
concurrency_limit=None,
)
def inquire_task(df):
if 'Y^' in df.columns:
label = 'predicted CPI/CPA labels (`Y^`)'
return {report_task: gr.Dropdown(visible=True,
info=f'Found {label} in your uploaded dataset. '
'Is it compound-protein interaction or binding affinity?'),
html_report: ''}
else:
return {report_task: gr.Dropdown(visible=False)}
report_df_change = file_for_report.change(
fn=update_df, inputs=file_for_report, outputs=[html_report, raw_df, report_df, analyze_btn, report_task],
concurrency_limit=100,
).success(
fn=lambda: [gr.Button(interactive=True)] * 2,
outputs=[csv_generate, html_generate],
)
file_for_report.upload(
fn=update_df, inputs=file_for_report, outputs=[html_report, raw_df, report_df, analyze_btn, report_task],
cancels=[report_df_change],
concurrency_limit=100,
).success(
fn=inquire_task, inputs=[raw_df],
outputs=[report_task, html_report],
)
file_for_report.clear(
fn=lambda: [gr.Button(interactive=False)] * 3 +
[gr.File(visible=False, value=None)] * 2 +
[gr.Dropdown(visible=False, value=None), ''],
cancels=[report_df_change],
outputs=[
csv_generate, html_generate, analyze_btn, csv_download_file, html_download_file, report_task, html_report
]
)
analyze_btn.click(
fn=submit_report, inputs=[raw_df, scores, filters, report_task], outputs=[
html_report, report_df, csv_download_file, html_download_file]
).success(
fn=lambda: [gr.Button(interactive=True)] * 2,
outputs=[csv_generate, html_generate],
concurrency_limit=100,
)
def create_csv_report_file(df, file_report, task, sep, progress=gr.Progress(track_tqdm=True)):
csv_sep_map = {
'Comma': ',',
'Tab': '\t',
}
y_colname = 'Y^'
if isinstance(task, str):
if task == 'Compound-Protein Interaction':
y_colname = 'Y_prob'
elif task == 'Compound-Protein Binding Affinity':
y_colname = 'Y_IC50'
try:
now = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
filename = f"{SERVER_DATA_DIR}/{Path(file_report.name).stem}_DeepSEQreen_report_{now}.csv"
df.rename(columns={'Y^': y_colname}).drop(
labels=['Compound', 'Scaffold'], axis=1
).to_csv(filename, index=False, na_rep='', sep=csv_sep_map[sep])
return gr.File(filename, visible=True)
except Exception as e:
gr.Warning(f"Failed to generate CSV due to error: {str(e)}")
return None
def create_html_report_file(df, file_report, task, opts, progress=gr.Progress(track_tqdm=True)):
try:
now = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
filename = f"{SERVER_DATA_DIR}/{Path(file_report.name).stem}_DeepSEQreen_report_{now}.html"
create_html_report(df, filename, task, opts)
return gr.File(filename, visible=True)
except Exception as e:
gr.Warning(f"Failed to generate HTML due to error: {str(e)}")
return None
# html_report.change(lambda: [gr.Button(visible=True)] * 2, outputs=[csv_generate, html_generate])
csv_generate.click(
lambda: gr.File(visible=True), outputs=csv_download_file,
).then(fn=create_csv_report_file, inputs=[report_df, file_for_report, report_task, csv_sep],
outputs=csv_download_file, show_progress='full')
html_generate.click(
lambda: gr.File(visible=True), outputs=html_download_file,
).then(fn=create_html_report_file, inputs=[report_df, file_for_report, report_task, html_opts],
outputs=html_download_file, show_progress='full')
if __name__ == "__main__":
pandarallel.initialize()
hydra.initialize(version_base="1.3", config_path="configs", job_name="webserver_inference")
session = requests.Session()
ADAPTER = HTTPAdapter(max_retries=Retry(total=5, backoff_factor=0.1, status_forcelist=[500, 502, 503, 504]))
session.mount('http://', ADAPTER)
session.mount('https://', ADAPTER)
db = TinyDB(f'{SERVER_DATA_DIR}/db.json')
# Set all RUNNING jobs to FAILED at TinyDB initialization
Job = Query()
jobs = db.all()
for job in jobs:
if job['status'] == 'RUNNING':
db.update({'status': 'FAILED'}, Job.id == job['id'])
scheduler = BackgroundScheduler()
scheduler.add_job(check_expiry, 'interval', hours=1, timezone=pytz.utc)
scheduler.start()
demo.queue(default_concurrency_limit=None, max_size=10).launch(show_api=False)
|