Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
model_id = "GoToCompany/llama3-8b-cpt-sahabatai-v1-instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained(model_id) | |
# def respond( | |
# message, | |
# history: list[tuple[str, str]], | |
# system_message, | |
# max_tokens, | |
# temperature, | |
# top_p, | |
# ): | |
# messages = [{"role": "system", "content": system_message}] | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
# """ | |
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
# """ | |
# demo = gr.ChatInterface( | |
# respond, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |
# Function to generate text | |
def generate_text(prompt, max_length=100): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate( | |
**inputs, | |
max_length=max_length, | |
num_return_sequences=1, | |
no_repeat_ngram_size=2, | |
do_sample=True, | |
top_p=0.95, | |
temperature=0.7 | |
) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Gradio frontend | |
def gradio_interface(prompt, max_length): | |
if not prompt.strip(): | |
return "Please enter a prompt." | |
try: | |
output = generate_text(prompt, max_length=max_length) | |
return output | |
except Exception as e: | |
return f"An error occurred: {str(e)}" | |
# Define Gradio components | |
with gr.Blocks() as demo: | |
gr.Markdown("# LLaMA3 8B CPT Sahabatai Instruct") | |
gr.Markdown("Generate text using the **LLaMA3 8B CPT Sahabatai Instruct** model.") | |
with gr.Row(): | |
with gr.Column(): | |
prompt_input = gr.Textbox( | |
label="Enter your prompt", | |
placeholder="Type something...", | |
lines=3, | |
) | |
max_length_slider = gr.Slider( | |
label="Max Length", | |
minimum=10, | |
maximum=200, | |
value=100, | |
step=10, | |
) | |
generate_button = gr.Button("Generate") | |
with gr.Column(): | |
output_text = gr.Textbox( | |
label="Generated Text", | |
lines=10, | |
interactive=False, | |
) | |
# Link the button to the function | |
generate_button.click( | |
fn=gradio_interface, | |
inputs=[prompt_input, max_length_slider], | |
outputs=output_text, | |
) | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
demo.launch() | |