File size: 13,177 Bytes
7fa4c88
 
 
 
3eeafd2
 
9f559e5
365f24d
c9eef99
f2c9b7f
3f46d08
 
 
c9eef99
9116275
c9eef99
 
7fa4c88
 
 
 
 
 
 
 
 
 
 
5fac4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fa4c88
 
 
 
aed25de
 
 
 
 
 
 
 
 
 
 
 
 
506360c
aed25de
 
 
 
 
7fa4c88
 
 
 
4f21ff8
7fa4c88
 
4f21ff8
 
c0c18e3
 
 
 
 
 
 
4f21ff8
 
7fa4c88
 
98b623b
 
 
4f21ff8
7fa4c88
 
4f21ff8
7fa4c88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f21ff8
7fa4c88
 
3f46d08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68928a1
 
 
bb8a421
 
68928a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f21ff8
7fa4c88
c0c18e3
3db1f6f
c0c18e3
4f21ff8
 
c0c18e3
c700885
7fa4c88
4f21ff8
 
 
66fb7b1
 
4f21ff8
7fa4c88
9f559e5
 
 
 
 
 
 
c0c18e3
 
 
 
 
 
 
c700885
c0c18e3
9f559e5
 
 
 
4edd91d
9f559e5
 
 
 
 
 
 
 
506360c
 
 
 
 
 
 
9f559e5
365f24d
 
e1c1e64
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
from pydantic import BaseModel
from llama_cpp import Llama
from concurrent.futures import ThreadPoolExecutor, as_completed
import re
import httpx
import asyncio
import gradio as gr
import os
from dotenv import load_dotenv
import spaces
import requests
import random
from faker import Faker

load_dotenv()

HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")

global_data = {
    'models': {},
    'tokens': {
        'eos': 'eos_token',
        'pad': 'pad_token',
        'padding': 'padding_token',
        'unk': 'unk_token',
        'bos': 'bos_token',
        'sep': 'sep_token',
        'cls': 'cls_token',
        'mask': 'mask_token',
        'n_ctx': 'n_ctx_token',
        'vocab_size': 'vocab_size_token',
        'n_embd': 'n_embd_token',
        'n_head': 'n_head_token',
        'n_layer': 'n_layer_token',
        'n_vocab': 'n_vocab_token',
        'block_size': 'block_size_token',
        'n_rot': 'n_rot_token',
        'rope_dim': 'rope_dim_token',
        'rope_scaling': 'rope_scaling_token',
        'n_positions': 'n_positions_token',
        'use_cache': 'use_cache_token',
        'use_parallel_inference': 'use_parallel_inference_token',
        'parallel_inference_count': 'parallel_inference_count_token',
        'use_mlock': 'use_mlock_token',
        'use_mmap': 'use_mmap_token',
        'use_cpu': 'use_cpu_token',
        'f16_kv': 'f16_kv_token',
        'f16_quant': 'f16_quant_token',
        'f16_output': 'f16_output_token',
        'use_flash_attn': 'use_flash_attn_token',
        'max_seq_len': 'max_seq_len_token',
        'do_sample': 'do_sample_token',
        'top_k': 'top_k_token',
        'top_p': 'top_p_token',
        'temperature': 'temperature_token',
        'num_return_sequences': 'num_return_sequences_token',
        'use_repetition_penalty': 'use_repetition_penalty_token',
        'repetition_penalty': 'repetition_penalty_token',
        'no_repeat_ngram_size': 'no_repeat_ngram_size_token',
        'bad_words_ids': 'bad_words_ids_token',
        'use_token_logging': 'use_token_logging_token',
        'use_tensor_parallel': 'use_tensor_parallel_token',
        'tensor_parallel_size': 'tensor_parallel_size_token',
        'use_gpu_memory_growth': 'use_gpu_memory_growth_token',
        'use_multi_gpu_inference': 'use_multi_gpu_inference_token',
        'multi_gpu_inference_count': 'multi_gpu_inference_count_token'
    }
}

model_configs = [
    {"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
    {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"},
    {"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"},
    {"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
    {"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"},
    {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"},
    {"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"},
    {"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
    {"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"},
    {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-q2_k.gguf", "name": "Meta Llama 3.1-70B"},
    {"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"},
    {"repo_id": "Ffftdtd5dtft/Hermes-3-Llama-3.1-8B-IQ1_S-GGUF", "filename": "hermes-3-llama-3.1-8b-iq1_s-imat.gguf", "name": "Hermes 3 Llama 3.1-8B"},
    {"repo_id": "Ffftdtd5dtft/Phi-3.5-mini-instruct-Q2_K-GGUF", "filename": "phi-3.5-mini-instruct-q2_k.gguf", "name": "Phi 3.5 Mini Instruct"},
    {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-70B Instruct"},
    {"repo_id": "Ffftdtd5dtft/codegemma-2b-IQ1_S-GGUF", "filename": "codegemma-2b-iq1_s-imat.gguf", "name": "Codegemma 2B"},
    {"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-IQ2_XXS-GGUF", "filename": "phi-3-mini-128k-instruct-iq2_xxs-imat.gguf", "name": "Phi 3 Mini 128K Instruct XXS"},
    {"repo_id": "Ffftdtd5dtft/TinyLlama-1.1B-Chat-v1.0-IQ1_S-GGUF", "filename": "tinyllama-1.1b-chat-v1.0-iq1_s-imat.gguf", "name": "TinyLlama 1.1B Chat"},
    {"repo_id": "Ffftdtd5dtft/Mistral-NeMo-Minitron-8B-Base-IQ1_S-GGUF", "filename": "mistral-nemo-minitron-8b-base-iq1_s-imat.gguf", "name": "Mistral NeMo Minitron 8B Base"},
    {"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"}
]

class ModelManager:
    def __init__(self):
        self.models = {}

    def load_model(self, model_config):
        if model_config['name'] not in self.models:
            try:
                print(f"Loading model {model_config['name']}...")
                self.models[model_config['name']] = Llama.from_pretrained(
                    repo_id=model_config['repo_id'], 
                    filename=model_config['filename'], 
                    use_auth_token=HUGGINGFACE_TOKEN
                )
                print(f"Model {model_config['name']} loaded successfully.")
            except Exception as e:
                print(f"Error loading model {model_config['name']}: {e}")

    def load_all_models(self):
        with ThreadPoolExecutor() as executor:
            for config in model_configs:
                executor.submit(self.load_model, config)
        return self.models

model_manager = ModelManager()
global_data['models'] = model_manager.load_all_models()

class ChatRequest(BaseModel):
    message: str

def normalize_input(input_text):
    return input_text.strip()

def remove_duplicates(text):
    text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you? [/INST]', text)
    text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you? [/INST]', text)
    text = text.replace('[/INST]', '')
    lines = text.split('\n')
    unique_lines = []
    seen_lines = set()
    for line in lines:
        if line not in seen_lines:
            unique_lines.append(line)
            seen_lines.add(line)
    return '\n'.join(unique_lines)

PROXY_URL = "https://uhhy-fsfsfs.hf.space/valid"

def get_random_proxy():
    try:
        response = requests.get(PROXY_URL)
        proxies = response.text.splitlines()
        return random.choice(proxies)
    except Exception as e:
        print(f"Error fetching proxy: {e}")
        return None

fake = Faker()

def generate_fake_ip():
    return fake.ipv4()

@spaces.GPU(
    queue=False, 
    allow_gpu_memory=True, 
    timeout=0, 
    duration=0, 
    gpu_type='Tesla V100', 
    gpu_count=2, 
    gpu_memory_limit='32GB', 
    cpu_limit=4, 
    memory_limit='64GB',
    retry=True, 
    retry_delay=30, 
    priority='high',
    disk_limit='100GB',
    scratch_space='/mnt/scratch',
    network_bandwidth_limit='200Mbps',
    internet_access=True,
    precision='float16',
    batch_size=128,
    num_threads=16,
    logging_level='DEBUG',
    log_to_file=True,
    alert_on_failure=True,
    data_encryption=True,
    env_variables={'CUDA_VISIBLE_DEVICES': '0'},
    environment_type='conda',
    enable_checkpointing=True,
    resource_limits={'gpu': 'Tesla V100', 'cpu': 8, 'memory': '128GB'},
    hyperparameter_tuning=True, 
    prefetch_data=True, 
    persistent_storage=True, 
    auto_scaling=True, 
    security_level='high', 
    task_priority='urgent', 
    retries_on_timeout=True, 
    file_system='nfs', 
    custom_metrics={'throughput': '300GB/s', 'latency': '10ms'}, 
    gpu_utilization_logging=True, 
    job_isolation='container', 
    failure_strategy='retry', 
    gpu_memory_overcommit=True, 
    cpu_overcommit=True, 
    memory_overcommit=True, 
    enable_optimizations=True, 
    multi_gpu_strategy='data_parallel', 
    model_parallelism=True, 
    quantization='dynamic', 
    pruning='structured', 
    tensor_parallelism=True, 
    mixed_precision_training=True, 
    layerwise_lr_decay=True, 
    warmup_steps=500, 
    learning_rate_scheduler='cosine_annealing', 
    dropout_rate=0.3, 
    weight_decay=0.01, 
    gradient_accumulation_steps=8, 
    mixed_precision_loss_scale=128, 
    tensorboard_logging=True, 
    hyperparameter_search_space={'learning_rate': [1e-5, 1e-3], 'batch_size': [64, 256]}, 
    early_stopping=True, 
    early_stopping_patience=10, 
    input_data_pipeline='tf.data', 
    batch_normalization=True, 
    activation_function='relu', 
    optimizer='adam', 
    gradient_clipping=1.0, 
    checkpoint_freq=10, 
    experiment_name='deep_model_training', 
    experiment_tags=['nlp', 'deep_learning'], 
    adaptive_lr=True, 
    learning_rate_max=0.01, 
    learning_rate_min=1e-6, 
    max_steps=100000, 
    tolerance=0.01, 
    logging_frequency=10, 
    profile_gpu=True, 
    profile_cpu=True, 
    debug_mode=True, 
    save_best_model=True, 
    evaluation_metric='accuracy', 
    job_preemption='enabled', 
    preemptible_resources=True, 
    grace_period=60, 
    resource_scheduling='fifo', 
    hyperparameter_optimization_algorithm='bayesian', 
    distributed_training=True, 
    multi_node_training=True, 
    max_retries=5, 
    log_level='INFO', 
    secure_socket_layer=True, 
    data_sharding=True, 
    distributed_optimizer='horovod', 
    mixed_precision_support=True, 
    fault_tolerance=True, 
    external_gpu_resources=True, 
    disk_cache=True, 
    backup_enabled=True, 
    backup_frequency='daily', 
    task_grouping='dynamic', 
    instance_type='high_memory', 
    instance_count=3, 
    task_runtime='hours', 
    adaptive_memory_allocation=True, 
    model_versioning=True, 
    multi_model_support=True, 
    batch_optimization=True, 
    memory_prefetch=True, 
    data_prefetch_threads=16, 
    network_optimization=True, 
    model_parallelism_strategy='pipeline', 
    verbose_logging=True, 
    lock_on_failure=True, 
    data_compression=True, 
    inference_mode='batch', 
    distributed_cache_enabled=True, 
    dynamic_batching=True, 
    model_deployment=True, 
    latency_optimization=True, 
    multi_region_deployment=True, 
    multi_user_support=True, 
    job_scheduling='auto', 
    max_job_count=100, 
    suspend_on_idle=True, 
    hyperparameter_search_algorithm='random', 
    job_priority_scaling=True, 
    quantum_computing_support=True, 
    dynamic_resource_scaling=True, 
    runtime_optimization=True, 
    checkpoint_interval='30min', 
    max_gpu_temperature=80, 
    scale_on_gpu_utilization=True, 
    worker_threads=8
)
def generate_model_response(model, inputs):
    try:
        print(f"Generating response for model: {model}")
        response = model(inputs)
        print(f"Response from {model}: {response}")
        return remove_duplicates(response['choices'][0]['text'])
    except Exception as e:
        print(f"Error generating model response from {model}: {e}")
        return "Error generating response. Please try again later." 

def remove_repetitive_responses(responses):
    unique_responses = {}
    for response in responses:
        if response not in unique_responses:
            unique_responses[response] = response
    return unique_responses

async def process_message(message):
    inputs = normalize_input(message)
    with ThreadPoolExecutor() as executor:
        futures = [
            executor.submit(generate_model_response, model, inputs)
            for model in global_data['models'].values()
        ]
        responses = []
        for future in as_completed(futures):
            try:
                response = future.result()
                responses.append(response)
            except Exception as e:
                print(f"Error with model: {e}")
                responses.append("Error generating response. Please try again later.")  

    unique_responses = remove_repetitive_responses(responses)
    formatted_response = ""
    for model, response in unique_responses.items():
        formatted_response += f"**{model}:**\n{response}\n\n"

    curl_command = f"""
    curl -X POST -H "Content-Type: application/json" \\
         -d '{{"message": "{message}"}}' \\
         http://localhost:7860/generate
    """
    return formatted_response, curl_command


iface = gr.Interface(
    fn=process_message,
    inputs=gr.Textbox(lines=2, placeholder="Enter your message here..."),
    outputs=[gr.Markdown(), gr.Textbox(label="cURL command")],
    title="Multi-Model LLM API",
    description="Enter a message and get responses from multiple LLMs.",
)

if __name__ == "__main__":
    port = int(os.environ.get("PORT", 7860))
    iface.launch(server_port=port)