File size: 7,121 Bytes
410390c cb81674 ebec48b cb81674 f9acdf3 00a3421 cb81674 410390c 0e63678 3e67bfd 631e498 410390c ebec48b b4532e1 ebec48b cb81674 410390c cb81674 410390c f9acdf3 410390c f9acdf3 410390c f9acdf3 9214e9b f9acdf3 c1d4983 cb81674 f9acdf3 cb81674 f9acdf3 cb81674 f9acdf3 cb81674 f9acdf3 cb81674 f9acdf3 c1d4983 f9acdf3 c1d4983 f9acdf3 cb81674 f9acdf3 c1d4983 f9acdf3 cb81674 f9acdf3 cb81674 f9acdf3 631e498 14af7ad ebec48b 410390c cb81674 f9acdf3 ebec48b cb81674 9214e9b cb81674 9214e9b cb81674 9214e9b ebec48b 0e63678 cb81674 9214e9b 410390c 0e63678 1642e7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import os
import json
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import boto3
import logging
from huggingface_hub import hf_hub_download
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
console_handler = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
s3_client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION
)
app = FastAPI()
class GenerateRequest(BaseModel):
model_name: str
input_text: str
task_type: str
class S3DirectStream:
def __init__(self, bucket_name):
self.s3_client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION
)
self.bucket_name = bucket_name
async def download_and_upload_to_s3(self, model_name):
try:
model_name = model_name.replace("/", "-").lower()
# Descarga de los archivos desde Hugging Face
config_file = hf_hub_download(repo_id=model_name, filename="config.json", token=HUGGINGFACE_HUB_TOKEN)
tokenizer_file = hf_hub_download(repo_id=model_name, filename="tokenizer.json", token=HUGGINGFACE_HUB_TOKEN)
# Verifica si ya existen en S3
if not await self.file_exists_in_s3(f"{model_name}/config.json"):
with open(config_file, "rb") as file:
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/config.json", Body=file)
if not await self.file_exists_in_s3(f"{model_name}/tokenizer.json"):
with open(tokenizer_file, "rb") as file:
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/tokenizer.json", Body=file)
except Exception as e:
logger.error(f"Error al cargar el modelo desde Hugging Face a S3: {e}")
raise HTTPException(status_code=500, detail=f"Error al cargar el modelo: {str(e)}")
async def file_exists_in_s3(self, s3_key):
try:
self.s3_client.head_object(Bucket=self.bucket_name, Key=s3_key)
return True
except self.s3_client.exceptions.ClientError:
return False
async def load_model_from_s3(self, model_name):
try:
model_name = model_name.replace("/", "-").lower()
model_files = await self.get_model_file_parts(model_name)
if not model_files:
await self.download_and_upload_to_s3(model_name)
# Cargar configuración del modelo
config_data = await self.stream_from_s3(f"{model_name}/config.json")
if isinstance(config_data, bytes):
config_data = config_data.decode("utf-8")
config_json = json.loads(config_data)
model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{model_name}", config=config_json)
return model
except HTTPException as e:
raise e
except Exception as e:
logger.error(f"Error al cargar el modelo desde S3: {e}")
raise HTTPException(status_code=500, detail=f"Error al cargar el modelo desde S3: {str(e)}")
async def load_tokenizer_from_s3(self, model_name):
try:
model_name = model_name.replace("/", "-").lower()
tokenizer_data = await self.stream_from_s3(f"{model_name}/tokenizer.json")
if isinstance(tokenizer_data, bytes):
tokenizer_data = tokenizer_data.decode("utf-8")
tokenizer = AutoTokenizer.from_pretrained(f"s3://{self.bucket_name}/{model_name}")
return tokenizer
except Exception as e:
logger.error(f"Error al cargar el tokenizer desde S3: {e}")
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {str(e)}")
async def stream_from_s3(self, key):
try:
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
return response['Body'].read()
except self.s3_client.exceptions.NoSuchKey:
raise HTTPException(status_code=404, detail=f"El archivo {key} no existe en el bucket S3.")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al descargar {key} desde S3: {str(e)}")
async def get_model_file_parts(self, model_name):
try:
model_name = model_name.replace("/", "-").lower()
files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=model_name)
model_files = [obj['Key'] for obj in files.get('Contents', []) if model_name in obj['Key']]
return model_files
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al obtener archivos del modelo {model_name} desde S3: {str(e)}")
@app.post("/generate")
async def generate(request: GenerateRequest):
try:
model_name = request.model_name
input_text = request.input_text
task_type = request.task_type
s3_direct_stream = S3DirectStream(S3_BUCKET_NAME)
model = await s3_direct_stream.load_model_from_s3(model_name)
tokenizer = await s3_direct_stream.load_tokenizer_from_s3(model_name)
if task_type == "text-to-text":
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0)
result = generator(input_text, max_length=1024, num_return_sequences=1)
return {"result": result[0]["generated_text"]}
elif task_type == "text-to-image":
generator = pipeline("text-to-image", model=model, tokenizer=tokenizer, device=0)
image = generator(input_text)
return {"result": image}
elif task_type == "text-to-speech":
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=0)
audio = generator(input_text)
return {"result": audio}
elif task_type == "text-to-video":
generator = pipeline("text-to-video", model=model, tokenizer=tokenizer, device=0)
video = generator(input_text)
return {"result": video}
else:
raise HTTPException(status_code=400, detail="Tipo de tarea no soportada")
except HTTPException as e:
raise e
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|