File size: 1,843 Bytes
74a3a30
 
7f5deb9
74a3a30
 
 
 
 
 
 
 
 
3833e7c
74a3a30
128ad4b
f93980b
603a3b6
f93980b
603a3b6
74a3a30
 
 
117091c
74a3a30
6c9a152
d8b3938
 
 
 
1fb43d3
d8b3938
8a5cd07
d8b3938
8a5cd07
d8b3938
 
 
 
 
1fb43d3
d8b3938
 
 
6c9a152
d8b3938
25d762f
117091c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import streamlit as st
import cv2
import pandas
from PIL import Image
import numpy as np
import tensorflow as tf
from tensorflow.keras.applications.resnet50 import preprocess_input 
from tensorflow.keras.preprocessing.image import img_to_array    

st.title('Palm Identification')
st.markdown("This is a Deep Learning application to identify if a satellite image clip contains Palm trees.\n")
st.markdown('The predicting result will be "Palm", or "Others".')
st.markdown('You can click "Browse files" multiple times until adding all images before generating prediction.\n')

#uploaded_file = st.file_uploader("Upload an image file", type="jpg", accept_multiple_files=True)

#imageContainer = st.empty()

#closeImage = st.button("clear all images")
img_height = 224
img_width = 224
class_names = ['Palm', 'Others']
model = tf.keras.models.load_model('model')

#Generate_pred = st.button("Generate Prediction")
with st.form("form", clear_on_submit=True):
    uploaded_file = st.file_uploader("Upload image files", type="jpg", accept_multiple_files=True)
    if uploaded_file is not None:
        st.image(uploaded_file, width=100)
        
    submitted = st.form_submit_button("Toggle here to predict or to delete the data")
            
    #    if submitted and uploaded_file is not None:
    
#            for file in uploaded_file:
#                img = Image.open(file)
#                img_array = img_to_array(img)
#                img_array = tf.expand_dims(img_array, axis = 0) # Create a batch
#                processed_image = preprocess_input(img_array)
        
#                predictions = model.predict(processed_image)
#                score = predictions[0]
#                st.markdown("Predicted class of the image {} is : {}".format(file, class_names[np.argmax(score)]))
    
#            uploaded_file = None