Spaces:
Running
Running
''' | |
This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de). | |
PM4Py is free software: you can redistribute it and/or modify | |
it under the terms of the GNU General Public License as published by | |
the Free Software Foundation, either version 3 of the License, or | |
(at your option) any later version. | |
PM4Py is distributed in the hope that it will be useful, | |
but WITHOUT ANY WARRANTY; without even the implied warranty of | |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
GNU General Public License for more details. | |
You should have received a copy of the GNU General Public License | |
along with PM4Py. If not, see <https://www.gnu.org/licenses/>. | |
''' | |
from enum import Enum | |
from pm4py.objects.log.obj import EventLog | |
import pandas as pd | |
from typing import Union, Dict, Optional, Any, List | |
from pm4py.algo.discovery.declare.templates import * | |
from pm4py.util import exec_utils, constants, xes_constants, pandas_utils | |
from collections import Counter | |
class Parameters(Enum): | |
CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY | |
ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY | |
def __check_existence(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]], | |
parameters: Optional[Dict[Any, Any]] = None): | |
if EXISTENCE in model: | |
for act in model[EXISTENCE]: | |
if act not in trace: | |
trace_dict["deviations"].append([EXISTENCE, act]) | |
def __check_absence(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]], | |
parameters: Optional[Dict[Any, Any]] = None): | |
if ABSENCE in model: | |
for act in model[ABSENCE]: | |
if act in trace: | |
trace_dict["deviations"].append([ABSENCE, act]) | |
def __check_exactly_one(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]], | |
parameters: Optional[Dict[Any, Any]] = None): | |
if EXACTLY_ONE in model: | |
trace_counter = Counter(trace) | |
for act in model[EXACTLY_ONE]: | |
if trace_counter[act] != 1: | |
trace_dict["deviations"].append([EXACTLY_ONE, act]) | |
def __check_init(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]], | |
parameters: Optional[Dict[Any, Any]] = None): | |
if INIT in model: | |
for act in model[INIT]: | |
if len(trace) == 0 or trace[0] != act: | |
trace_dict["deviations"].append([INIT, act]) | |
def __check_responded_existence(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], | |
trace_dict: Dict[str, List[Any]], parameters: Optional[Dict[Any, Any]] = None): | |
if RESPONDED_EXISTENCE in model: | |
for act_couple in model[RESPONDED_EXISTENCE]: | |
if act_couple[0] in trace and act_couple[1] not in trace: | |
trace_dict["deviations"].append([RESPONDED_EXISTENCE, act_couple]) | |
def __check_coexistence(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]], | |
parameters: Optional[Dict[Any, Any]] = None): | |
if COEXISTENCE in model: | |
for act_couple in model[COEXISTENCE]: | |
if (act_couple[0] in trace and act_couple[1] not in trace) or ( | |
act_couple[1] in trace and act_couple[0] not in trace): | |
trace_dict["deviations"].append([COEXISTENCE, act_couple]) | |
def __check_non_coexistence(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], | |
trace_dict: Dict[str, List[Any]], parameters: Optional[Dict[Any, Any]] = None): | |
if NONCOEXISTENCE in model: | |
for act_couple in model[NONCOEXISTENCE]: | |
if act_couple[0] in trace and act_couple[1] in trace: | |
trace_dict["deviations"].append([NONCOEXISTENCE, act_couple]) | |
def __check_response(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]], | |
act_idxs: Dict[str, List[int]], parameters: Optional[Dict[Any, Any]] = None): | |
if RESPONSE in model: | |
for act_couple in model[RESPONSE]: | |
if act_couple[0] in trace: | |
if (not act_couple[1] in trace) or max(act_idxs[act_couple[0]]) > max(act_idxs[act_couple[1]]): | |
trace_dict["deviations"].append([RESPONSE, act_couple]) | |
def __check_precedence(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]], | |
act_idxs: Dict[str, List[int]], parameters: Optional[Dict[Any, Any]] = None): | |
if PRECEDENCE in model: | |
for act_couple in model[PRECEDENCE]: | |
if act_couple[1] in trace: | |
if (not act_couple[0] in trace) or min(act_idxs[act_couple[0]]) > min(act_idxs[act_couple[1]]): | |
trace_dict["deviations"].append([PRECEDENCE, act_couple]) | |
def __check_succession(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], trace_dict: Dict[str, List[Any]], | |
act_idxs: Dict[str, List[int]], parameters: Optional[Dict[Any, Any]] = None): | |
if SUCCESSION in model: | |
for act_couple in model[SUCCESSION]: | |
if (not act_couple[0] in trace or not act_couple[1] in trace) or min(act_idxs[act_couple[0]]) > min( | |
act_idxs[act_couple[1]]) or max(act_idxs[act_couple[0]]) > max(act_idxs[act_couple[1]]): | |
trace_dict["deviations"].append([SUCCESSION, act_couple]) | |
def __check_alt_response(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], | |
trace_dict: Dict[str, List[Any]], act_idxs: Dict[str, List[int]], | |
parameters: Optional[Dict[Any, Any]] = None): | |
if ALTRESPONSE in model: | |
for act_couple in model[RESPONSE]: | |
spec_idxs = [] | |
if act_couple[0] in trace: | |
spec_idxs = spec_idxs + [(act_couple[0], i) for i in act_idxs[act_couple[0]]] | |
if act_couple[1] in trace: | |
spec_idxs = spec_idxs + [(act_couple[1], i) for i in act_idxs[act_couple[1]]] | |
spec_idxs = sorted(spec_idxs, key=lambda x: (x[1], x[0])) | |
while spec_idxs: | |
if spec_idxs[0][0] != act_couple[0]: | |
del spec_idxs[0] | |
else: | |
break | |
is_ok = True | |
for i in range(len(spec_idxs)): | |
if i % 2 == 0 and (spec_idxs[i][0] != act_couple[0] or i == len(spec_idxs) - 1 or spec_idxs[i + 1][0] != | |
act_couple[1]): | |
is_ok = False | |
break | |
if not is_ok: | |
trace_dict["deviations"].append([ALTRESPONSE, act_couple]) | |
def __check_chain_response(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], | |
trace_dict: Dict[str, List[Any]], act_idxs: Dict[str, List[int]], | |
parameters: Optional[Dict[Any, Any]] = None): | |
if CHAINRESPONSE in model: | |
for act_couple in model[CHAINRESPONSE]: | |
spec_idxs = [] | |
if act_couple[0] in trace: | |
spec_idxs = spec_idxs + [(act_couple[0], i) for i in act_idxs[act_couple[0]]] | |
if act_couple[1] in trace: | |
spec_idxs = spec_idxs + [(act_couple[1], i) for i in act_idxs[act_couple[1]]] | |
spec_idxs = sorted(spec_idxs, key=lambda x: (x[1], x[0])) | |
while spec_idxs: | |
if spec_idxs[0][0] != act_couple[0]: | |
del spec_idxs[0] | |
else: | |
break | |
is_ok = True | |
for i in range(len(spec_idxs)): | |
if i % 2 == 0 and (spec_idxs[i][0] != act_couple[0] or i == len(spec_idxs) - 1 or spec_idxs[i + 1][0] != | |
act_couple[1] or spec_idxs[i + 1][1] != spec_idxs[i][1] + 1): | |
is_ok = False | |
break | |
if not is_ok: | |
trace_dict["deviations"].append([CHAINRESPONSE, act_couple]) | |
def __check_alt_precedence(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], | |
trace_dict: Dict[str, List[Any]], act_idxs: Dict[str, List[int]], | |
parameters: Optional[Dict[Any, Any]] = None): | |
if ALTPRECEDENCE in model: | |
for act_couple in model[ALTPRECEDENCE]: | |
spec_idxs = [] | |
if act_couple[0] in trace: | |
spec_idxs = spec_idxs + [(act_couple[0], i) for i in act_idxs[act_couple[0]]] | |
if act_couple[1] in trace: | |
spec_idxs = spec_idxs + [(act_couple[1], i) for i in act_idxs[act_couple[1]]] | |
spec_idxs = sorted(spec_idxs, key=lambda x: (x[1], x[0])) | |
while len(spec_idxs) > 1: | |
if spec_idxs[1][0] != act_couple[1]: | |
del spec_idxs[0] | |
else: | |
break | |
is_ok = True | |
for i in range(len(spec_idxs)): | |
if i % 2 == 0 and (spec_idxs[i][0] != act_couple[0] or i == len(spec_idxs) - 1 or spec_idxs[i + 1][0] != | |
act_couple[1]): | |
is_ok = False | |
break | |
if not is_ok: | |
trace_dict["deviations"].append([ALTPRECEDENCE, act_couple]) | |
def __check_chain_precedence(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], | |
trace_dict: Dict[str, List[Any]], act_idxs: Dict[str, List[int]], | |
parameters: Optional[Dict[Any, Any]] = None): | |
if CHAINPRECEDENCE in model: | |
for act_couple in model[CHAINPRECEDENCE]: | |
spec_idxs = [] | |
if act_couple[0] in trace: | |
spec_idxs = spec_idxs + [(act_couple[0], i) for i in act_idxs[act_couple[0]]] | |
if act_couple[1] in trace: | |
spec_idxs = spec_idxs + [(act_couple[1], i) for i in act_idxs[act_couple[1]]] | |
spec_idxs = sorted(spec_idxs, key=lambda x: (x[1], x[0])) | |
while len(spec_idxs) > 1: | |
if spec_idxs[1][0] != act_couple[1]: | |
del spec_idxs[0] | |
else: | |
break | |
is_ok = True | |
for i in range(len(spec_idxs)): | |
if i % 2 == 0 and (spec_idxs[i][0] != act_couple[0] or i == len(spec_idxs) - 1 or spec_idxs[i + 1][0] != | |
act_couple[1] or spec_idxs[i + 1][1] != spec_idxs[i][1] + 1): | |
is_ok = False | |
break | |
if not is_ok: | |
trace_dict["deviations"].append([CHAINPRECEDENCE, act_couple]) | |
def __check_alt_succession(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], | |
trace_dict: Dict[str, List[Any]], act_idxs: Dict[str, List[int]], | |
parameters: Optional[Dict[Any, Any]] = None): | |
if ALTSUCCESSION in model: | |
for act_couple in model[ALTSUCCESSION]: | |
spec_idxs = [] | |
if act_couple[0] in trace: | |
spec_idxs = spec_idxs + [(act_couple[0], i) for i in act_idxs[act_couple[0]]] | |
if act_couple[1] in trace: | |
spec_idxs = spec_idxs + [(act_couple[1], i) for i in act_idxs[act_couple[1]]] | |
spec_idxs = sorted(spec_idxs, key=lambda x: (x[1], x[0])) | |
is_ok = True | |
for i in range(len(spec_idxs)): | |
if i % 2 == 0 and (spec_idxs[i][0] != act_couple[0] or i == len(spec_idxs) - 1 or spec_idxs[i + 1][0] != | |
act_couple[1]): | |
is_ok = False | |
break | |
if not is_ok: | |
trace_dict["deviations"].append([ALTSUCCESSION, act_couple]) | |
def __check_chain_succession(trace: List[str], model: Dict[str, Dict[Any, Dict[str, int]]], | |
trace_dict: Dict[str, List[Any]], act_idxs: Dict[str, List[int]], | |
parameters: Optional[Dict[Any, Any]] = None): | |
if CHAINSUCCESSION in model: | |
for act_couple in model[CHAINSUCCESSION]: | |
spec_idxs = [] | |
if act_couple[0] in trace: | |
spec_idxs = spec_idxs + [(act_couple[0], i) for i in act_idxs[act_couple[0]]] | |
if act_couple[1] in trace: | |
spec_idxs = spec_idxs + [(act_couple[1], i) for i in act_idxs[act_couple[1]]] | |
spec_idxs = sorted(spec_idxs, key=lambda x: (x[1], x[0])) | |
is_ok = True | |
for i in range(len(spec_idxs)): | |
if i % 2 == 0 and (spec_idxs[i][0] != act_couple[0] or i == len(spec_idxs) - 1 or spec_idxs[i + 1][0] != | |
act_couple[1] or spec_idxs[i + 1][1] != spec_idxs[i][1] + 1): | |
is_ok = False | |
break | |
if not is_ok: | |
trace_dict["deviations"].append([CHAINSUCCESSION, act_couple]) | |
def apply_list(projected_log: List[List[str]], model: Dict[str, Dict[Any, Dict[str, int]]], | |
parameters: Optional[Dict[Any, Any]] = None) -> List[Dict[str, Any]]: | |
if parameters is None: | |
parameters = {} | |
conf_cases = [] | |
total_num_constraints = 0 | |
for k in model: | |
total_num_constraints += len(model[k]) | |
for trace in projected_log: | |
act_idxs = {} | |
for i in range(len(trace)): | |
if trace[i] not in act_idxs: | |
act_idxs[trace[i]] = [] | |
act_idxs[trace[i]].append(i) | |
ret = {} | |
ret["no_constr_total"] = total_num_constraints | |
ret["deviations"] = [] | |
__check_existence(trace, model, ret, parameters) | |
__check_exactly_one(trace, model, ret, parameters) | |
__check_init(trace, model, ret, parameters) | |
__check_responded_existence(trace, model, ret, parameters) | |
__check_coexistence(trace, model, ret, parameters) | |
__check_non_coexistence(trace, model, ret, parameters) | |
__check_response(trace, model, ret, act_idxs, parameters) | |
__check_precedence(trace, model, ret, act_idxs, parameters) | |
__check_succession(trace, model, ret, act_idxs, parameters) | |
__check_alt_response(trace, model, ret, act_idxs, parameters) | |
__check_chain_response(trace, model, ret, act_idxs, parameters) | |
__check_alt_precedence(trace, model, ret, act_idxs, parameters) | |
__check_chain_precedence(trace, model, ret, act_idxs, parameters) | |
__check_alt_succession(trace, model, ret, act_idxs, parameters) | |
__check_chain_succession(trace, model, ret, act_idxs, parameters) | |
__check_absence(trace, model, ret, parameters) | |
__check_non_coexistence(trace, model, ret, parameters) | |
ret["no_dev_total"] = len(ret["deviations"]) | |
ret["dev_fitness"] = 1.0 - ret["no_dev_total"] / ret["no_constr_total"] if ret["no_constr_total"] > 0 else 1.0 | |
ret["is_fit"] = ret["no_dev_total"] == 0 | |
conf_cases.append(ret) | |
return conf_cases | |
def apply(log: Union[EventLog, pd.DataFrame], model: Dict[str, Dict[Any, Dict[str, int]]], | |
parameters: Optional[Dict[Any, Any]] = None) -> List[Dict[str, Any]]: | |
""" | |
Applies conformance checking against a DECLARE model. | |
Paper: | |
F. M. Maggi, A. J. Mooij and W. M. P. van der Aalst, "User-guided discovery of declarative process models," 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), Paris, France, 2011, pp. 192-199, doi: 10.1109/CIDM.2011.5949297. | |
Parameters | |
-------------- | |
log | |
Event log / Pandas dataframe | |
model | |
DECLARE model | |
parameters | |
Possible parameters of the algorithm, including: | |
- Parameters.ACTIVITY_KEY => the attribute to be used as activity | |
- Parameters.CASE_ID_KEY => the attribute to be used as case identifier | |
Returns | |
------------- | |
lst_conf_res | |
List containing for every case a dictionary with different keys: | |
- no_constr_total => the total number of constraints of the DECLARE model | |
- deviations => a list of deviations | |
- no_dev_total => the total number of deviations | |
- dev_fitness => the fitness (1 - no_dev_total / no_constr_total) | |
- is_fit => True if the case is perfectly fit | |
""" | |
if parameters is None: | |
parameters = {} | |
activity_key = exec_utils.get_param_value(Parameters.ACTIVITY_KEY, parameters, xes_constants.DEFAULT_NAME_KEY) | |
case_id_key = exec_utils.get_param_value(Parameters.CASE_ID_KEY, parameters, constants.CASE_CONCEPT_NAME) | |
import pm4py | |
projected_log = pm4py.project_on_event_attribute(log, activity_key, case_id_key=case_id_key) | |
ret = apply_list(projected_log, model, parameters=parameters) | |
return ret | |
def get_diagnostics_dataframe(log, conf_result, parameters=None) -> pd.DataFrame: | |
""" | |
Gets the diagnostics dataframe from a log and the results | |
of DECLARE-based conformance checking | |
Parameters | |
-------------- | |
log | |
Event log | |
conf_result | |
Results of conformance checking | |
Returns | |
-------------- | |
diagn_dataframe | |
Diagnostics dataframe | |
""" | |
if parameters is None: | |
parameters = {} | |
case_id_key = exec_utils.get_param_value(Parameters.CASE_ID_KEY, parameters, xes_constants.DEFAULT_TRACEID_KEY) | |
import pandas as pd | |
diagn_stream = [] | |
for index in range(len(log)): | |
case_id = log[index].attributes[case_id_key] | |
no_dev_total = conf_result[index]["no_dev_total"] | |
no_constr_total = conf_result[index]["no_constr_total"] | |
dev_fitness = conf_result[index]["dev_fitness"] | |
diagn_stream.append({"case_id": case_id, "no_dev_total": no_dev_total, "no_constr_total": no_constr_total, | |
"dev_fitness": dev_fitness}) | |
return pandas_utils.instantiate_dataframe(diagn_stream) | |