Spaces:
Running
Running
''' | |
This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de). | |
PM4Py is free software: you can redistribute it and/or modify | |
it under the terms of the GNU General Public License as published by | |
the Free Software Foundation, either version 3 of the License, or | |
(at your option) any later version. | |
PM4Py is distributed in the hope that it will be useful, | |
but WITHOUT ANY WARRANTY; without even the implied warranty of | |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
GNU General Public License for more details. | |
You should have received a copy of the GNU General Public License | |
along with PM4Py. If not, see <https://www.gnu.org/licenses/>. | |
''' | |
from pm4py.algo.conformance.log_skeleton.variants import classic | |
from enum import Enum | |
from pm4py.util import exec_utils | |
from typing import Optional, Dict, Any, Union, List, Set | |
from pm4py.objects.log.obj import EventLog, Trace | |
import pandas as pd | |
class Variants(Enum): | |
CLASSIC = classic | |
CLASSIC = Variants.CLASSIC | |
DEFAULT_VARIANT = Variants.CLASSIC | |
def apply(obj: Union[EventLog, Trace, pd.DataFrame], model: Dict[str, Any], variant=DEFAULT_VARIANT, parameters: Optional[Dict[Any, Any]] = None) -> List[Set[Any]]: | |
""" | |
Apply log-skeleton based conformance checking given an event log/trace | |
and a log-skeleton model | |
Parameters | |
-------------- | |
obj | |
Object (event log/trace) | |
model | |
Log-skeleton model | |
variant | |
Variant of the algorithm, possible values: Variants.CLASSIC | |
parameters | |
Parameters of the algorithm, including: | |
- Parameters.ACTIVITY_KEY | |
- Parameters.CONSIDERED_CONSTRAINTS, among: equivalence, always_after, always_before, never_together, directly_follows, activ_freq | |
Returns | |
-------------- | |
aligned_traces | |
Conformance checking results for each trace: | |
- Outputs.IS_FIT => boolean that tells if the trace is perfectly fit according to the model | |
- Outputs.DEV_FITNESS => deviation based fitness (between 0 and 1; the more the trace is near to 1 the more fit is) | |
- Outputs.DEVIATIONS => list of deviations in the model | |
""" | |
if parameters is None: | |
parameters = {} | |
if type(obj) is Trace: | |
return exec_utils.get_variant(variant).apply_trace(obj, model, parameters=parameters) | |
else: | |
return exec_utils.get_variant(variant).apply_log(obj, model, parameters=parameters) | |
def apply_from_variants_list(var_list: List[List[str]], model: Dict[str, Any], variant=DEFAULT_VARIANT, parameters: Optional[Dict[Any, Any]] = None) -> List[Set[Any]]: | |
""" | |
Performs conformance checking using the log skeleton, | |
applying it from a list of variants | |
Parameters | |
-------------- | |
var_list | |
List of variants | |
model | |
Log skeleton model | |
variant | |
Variant of the algorithm, possible values: Variants.CLASSIC | |
parameters | |
Parameters | |
Returns | |
-------------- | |
conformance_dictio | |
Dictionary containing, for each variant, the result | |
of log skeleton checking | |
""" | |
if parameters is None: | |
parameters = {} | |
return exec_utils.get_variant(variant).apply_from_variants_list(var_list, model, parameters=parameters) | |
def get_diagnostics_dataframe(log: EventLog, conf_result: List[Set[Any]], variant=DEFAULT_VARIANT, parameters: Optional[Dict[Any, Any]] = None) -> pd.DataFrame: | |
""" | |
Gets the diagnostics dataframe from a log and the results | |
of log skeleton-based conformance checking | |
Parameters | |
-------------- | |
log | |
Event log | |
conf_result | |
Results of conformance checking | |
Returns | |
-------------- | |
diagn_dataframe | |
Diagnostics dataframe | |
""" | |
if parameters is None: | |
parameters = {} | |
return exec_utils.get_variant(variant).get_diagnostics_dataframe(log, conf_result, parameters=parameters) | |