process_mining / gapp.py
kota
initial commit
1089f07
raw
history blame
6.85 kB
import os
import logging
from io import StringIO
from pathlib import Path
from collections import OrderedDict
import plotly.express as px
import gradio as gr
import pandas as pd
from dotenv import load_dotenv
# from PIL import Image
import matplotlib.pyplot as plt
# import cv2
# import numpy as np
import plotly.graph_objects as go
import networkx as nx
from model import dfg2networkx, discover_process_map, discover_process_map_activities_connections, discover_process_map_variants, view_process_map
load_dotenv()
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
def get_data(temp_file, state: dict):
# print(f"temp_file: {temp_file}")
if isinstance(temp_file, str):
# df = pd.read_csv(StringIO(temp_file), parse_dates=[ "Start", "Finish"])
df = pd.read_csv(temp_file, sep=';', dtype={'case_id': str}, parse_dates = ['timestamp'])
df.loc[:, 'timestamp'] = pd.to_datetime(df['timestamp']) # format='%Y-%m-%d %H:%M:%S'
else:
# df = pd.read_csv(temp_file.name, ) # parse_dates=[ "Start", "Finish"]
df = pd.read_csv(temp_file.name, sep=';', dtype={'case_id': str}, parse_dates = ['timestamp'])
df.loc[:, 'timestamp'] = pd.to_datetime(df['timestamp'])
# logger.debug(df.head())
# logger.debug(df.dtypes)
state['df'] = df
return df, state
def get_stats(state: dict):
df = state.get('df', pd.DataFrame()).copy()
summary = pd.DataFrame({
"metric": ["่ณ‡ๆ–™็ญ†ๆ•ธ", "Case ๆ•ธ้‡", "Activity ๆ•ธ้‡", "่ตทๅง‹ๆ™‚้–“", "็ตๆŸๆ™‚้–“"],
"value": [ df.shape[0], df['case_id'].nunique(), df['activity'].nunique(), df['timestamp'].min(), df['timestamp'].max() ]
})
case_stats = df.groupby(
by = ['case_id'], as_index=False
).agg(count = ('activity', len)).reset_index()
logger.debug(f"case stats: {case_stats}")
case_lead_time = df.groupby(
by = ['case_id'], as_index=False
).agg( duration = ('timestamp', lambda x: (x.max() - x.min()).total_seconds()//3600 )).reset_index()
def avg_duration(x):
return pd.Series({ "avg_duration": (x.timestamp.max() - x.timestamp.min()).total_seconds()//3600})
case_avg_duration = df.groupby(
by = ['case_id'], as_index=False
).apply(
avg_duration
)
logger.debug(f"case lead time: {case_lead_time}")
return (
summary,
gr.BarPlot( case_stats, x="case_id", y="count", title="Case Stats", tooltip = ["case_id", "count"], width=None),
gr.BarPlot( case_lead_time, x="case_id", y="duration", title="Case Lead Time", tooltip = ["case_id", "duration"], width=None),
gr.BarPlot( case_avg_duration, x="case_id", y="avg_duration", title="Case Average Duration", tooltip = ["case_id", "avg_duration"], width=None),
state
)
def get_process_map( state: dict = {}):
df = state.get('df', pd.DataFrame()).copy()
net, img = discover_process_map( df, type='petrinet')
return img, state
def get_process_map_variants( top_k: int = 1, state: dict = {}):
"""
"""
df = state.get('df', pd.DataFrame()).copy()
dfg, start_activities, end_activities = discover_process_map_variants( df, top_k, type='dfg')
top_variant_connections = OrderedDict(sorted(dfg.items(), key=lambda item: item[1], reverse=True))
state['top_variant_connections'] = top_variant_connections
if 'top_variant' not in state and top_k == 1:
state['top_variant'] = {'dfg': dfg, 'start_activities': start_activities, 'end_activities': end_activities}
nx_graph = dfg2networkx( dfg, start_activities, end_activities)
chart = view_process_map( nx_graph, process_type='dfg', layout_type='sfdp')
return chart, state
def get_process_map_activities_connections( activity_rank: int = 0, connection_rank: int = 0, state: dict = {}):
"""
"""
df = state.get('df', pd.DataFrame()).copy()
dfg, start_activities, end_activities = discover_process_map_activities_connections( df, activity_rank = activity_rank, connection_rank = connection_rank, state = state)
nx_graph = dfg2networkx( dfg, start_activities, end_activities)
chart = view_process_map( nx_graph, process_type='dfg', layout_type='sfdp')
return chart, state
## --- block --- ##
css = """
h1 {
text-align: center;
display:block;
}
"""
demo = gr.Blocks(css = css)
with demo:
gr.Markdown("# ๐ŸŒŸ Process Dicovery ๐ŸŒŸ")
state = gr.State(value={})
with gr.Row():
upl_btn = gr.UploadButton(label="Upload", file_types = ['.csv'], file_count = "single")
# with gr.Row('Data Preview'):
with gr.Accordion('Data Preview'):
df = gr.Dataframe()
upl_btn.upload( fn=get_data, inputs = [upl_btn, state], outputs=[df, state])
with gr.Row():
with gr.Tab('Data Explorer'):
# outputs.append(gr.Dataframe( label="Event logs"))
de_btn = gr.Button("Get Stats")
with gr.Row():
summary = gr.Dataframe( label="Summary", interactive=False, height=300)
chart1 = gr.BarPlot( label="Case Stats")
chart2 = gr.BarPlot( label="Case Lead Time Stats")
chart3 = gr.BarPlot( label="Case Average Activity Time Stats")
de_btn.click( fn=get_stats, inputs = [state], outputs=[ summary, chart1, chart2, chart3, state])
with gr.Tab('Variant Explorer'):
ve_btn = gr.Button("Get Variants")
top_k_variant_selector = gr.Slider(0, 10, value=1, step=1, label="Top-K", info="้ธๆ“‡ Variant ๆ•ธ้‡๏ผˆ0: ๅ…จ้ธ๏ผ‰")
pmchart = gr.Plot( label="Process Map")
ve_btn.click( fn=get_process_map_variants, inputs = [ top_k_variant_selector, state], outputs=[ pmchart, state])
with gr.Tab('Process Explorer'):
pe_btn = gr.Button("Get Activities & Connections")
with gr.Column():
top_k_activity_selector = gr.Slider(0, 10, value=1, step=1, label="Activity", info="ใ€pendingใ€‘ๅขžๆธ› Top Activity ๆ•ธ้‡๏ผˆ0: ๅ…จ้ธ๏ผ‰")
top_k_connection_selector = gr.Slider(0, 10, value=1, step=1, label="Connection", info="ๅขžๆธ› Top Connection ๆ•ธ้‡๏ผˆ0: ๅ…จ้ธ๏ผ‰")
pmchart = gr.Plot( label="Process Map")
pe_btn.click( fn=get_process_map_activities_connections, inputs = [ top_k_activity_selector, top_k_connection_selector, state], outputs=[ pmchart, state])
with gr.Tab('Process Model'):
cc_btn = gr.Button("Get Process Model")
img = gr.Image( label="Process Model")
cc_btn.click( fn=get_process_map, inputs = [state], outputs=[ img, state])
if __name__ == "__main__":
demo.launch(
# share=True,
server_name="0.0.0.0",
server_port=int(os.environ.get("PORT")),
auth=( os.environ.get("USER_NAME"), os.environ.get("PASSWORD"))
)