Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the BSD-style license found in the | |
# LICENSE file in the root directory of this source tree. | |
import os | |
import unittest | |
import torch | |
from pytorch3d.implicitron.dataset.blender_dataset_map_provider import ( | |
BlenderDatasetMapProvider, | |
) | |
from pytorch3d.implicitron.dataset.data_source import ImplicitronDataSource | |
from pytorch3d.implicitron.dataset.dataset_base import FrameData | |
from pytorch3d.implicitron.dataset.llff_dataset_map_provider import ( | |
LlffDatasetMapProvider, | |
) | |
from pytorch3d.implicitron.tools.config import expand_args_fields, get_default_args | |
from pytorch3d.renderer import PerspectiveCameras | |
from tests.common_testing import TestCaseMixin | |
# These tests are only run internally, where the data is available. | |
internal = os.environ.get("FB_TEST", False) | |
inside_re_worker = os.environ.get("INSIDE_RE_WORKER", False) | |
class TestDataLlff(TestCaseMixin, unittest.TestCase): | |
def test_synthetic(self): | |
if inside_re_worker: | |
return | |
expand_args_fields(BlenderDatasetMapProvider) | |
provider = BlenderDatasetMapProvider( | |
base_dir="manifold://co3d/tree/nerf_data/nerf_synthetic/lego", | |
object_name="lego", | |
) | |
dataset_map = provider.get_dataset_map() | |
known_matrix = torch.zeros(1, 4, 4) | |
known_matrix[0, 0, 0] = 2.7778 | |
known_matrix[0, 1, 1] = 2.7778 | |
known_matrix[0, 2, 3] = 1 | |
known_matrix[0, 3, 2] = 1 | |
for name, length in [("train", 100), ("val", 100), ("test", 200)]: | |
dataset = getattr(dataset_map, name) | |
self.assertEqual(len(dataset), length) | |
# try getting a value | |
value = dataset[0] | |
self.assertEqual(value.image_rgb.shape, (3, 800, 800)) | |
self.assertEqual(value.fg_probability.shape, (1, 800, 800)) | |
# corner of image is background | |
self.assertEqual(value.fg_probability[0, 0, 0], 0) | |
self.assertEqual(value.fg_probability.max(), 1.0) | |
self.assertIsInstance(value.camera, PerspectiveCameras) | |
self.assertEqual(len(value.camera), 1) | |
self.assertIsNone(value.camera.K) | |
matrix = value.camera.get_projection_transform().get_matrix() | |
self.assertClose(matrix, known_matrix, atol=1e-4) | |
self.assertIsInstance(value, FrameData) | |
def test_llff(self): | |
if inside_re_worker: | |
return | |
expand_args_fields(LlffDatasetMapProvider) | |
provider = LlffDatasetMapProvider( | |
base_dir="manifold://co3d/tree/nerf_data/nerf_llff_data/fern", | |
object_name="fern", | |
downscale_factor=8, | |
) | |
dataset_map = provider.get_dataset_map() | |
known_matrix = torch.zeros(1, 4, 4) | |
known_matrix[0, 0, 0] = 2.1564 | |
known_matrix[0, 1, 1] = 2.1564 | |
known_matrix[0, 2, 3] = 1 | |
known_matrix[0, 3, 2] = 1 | |
for name, length, frame_type in [ | |
("train", 17, "known"), | |
("test", 3, "unseen"), | |
("val", 3, "unseen"), | |
]: | |
dataset = getattr(dataset_map, name) | |
self.assertEqual(len(dataset), length) | |
# try getting a value | |
value = dataset[0] | |
self.assertIsInstance(value, FrameData) | |
self.assertEqual(value.frame_type, frame_type) | |
self.assertEqual(value.image_rgb.shape, (3, 378, 504)) | |
self.assertIsInstance(value.camera, PerspectiveCameras) | |
self.assertEqual(len(value.camera), 1) | |
self.assertIsNone(value.camera.K) | |
matrix = value.camera.get_projection_transform().get_matrix() | |
self.assertClose(matrix, known_matrix, atol=1e-4) | |
self.assertEqual(len(dataset_map.test.get_eval_batches()), 3) | |
for batch in dataset_map.test.get_eval_batches(): | |
self.assertEqual(len(batch), 1) | |
self.assertEqual(dataset_map.test[batch[0]].frame_type, "unseen") | |
def test_include_known_frames(self): | |
if inside_re_worker: | |
return | |
expand_args_fields(LlffDatasetMapProvider) | |
provider = LlffDatasetMapProvider( | |
base_dir="manifold://co3d/tree/nerf_data/nerf_llff_data/fern", | |
object_name="fern", | |
n_known_frames_for_test=2, | |
) | |
dataset_map = provider.get_dataset_map() | |
for name, types in [ | |
("train", ["known"] * 17), | |
("val", ["unseen"] * 3 + ["known"] * 17), | |
("test", ["unseen"] * 3 + ["known"] * 17), | |
]: | |
dataset = getattr(dataset_map, name) | |
self.assertEqual(len(dataset), len(types)) | |
for i, frame_type in enumerate(types): | |
value = dataset[i] | |
self.assertEqual(value.frame_type, frame_type) | |
self.assertIsNone(value.fg_probability) | |
self.assertEqual(len(dataset_map.test.get_eval_batches()), 3) | |
for batch in dataset_map.test.get_eval_batches(): | |
self.assertEqual(len(batch), 3) | |
self.assertEqual(dataset_map.test[batch[0]].frame_type, "unseen") | |
for i in batch[1:]: | |
self.assertEqual(dataset_map.test[i].frame_type, "known") | |
def test_loaders(self): | |
if inside_re_worker: | |
return | |
args = get_default_args(ImplicitronDataSource) | |
args.dataset_map_provider_class_type = "BlenderDatasetMapProvider" | |
dataset_args = args.dataset_map_provider_BlenderDatasetMapProvider_args | |
dataset_args.object_name = "lego" | |
dataset_args.base_dir = "manifold://co3d/tree/nerf_data/nerf_synthetic/lego" | |
data_source = ImplicitronDataSource(**args) | |
_, data_loaders = data_source.get_datasets_and_dataloaders() | |
for i in data_loaders.train: | |
self.assertEqual(i.frame_type, ["known"]) | |
self.assertEqual(i.image_rgb.shape, (1, 3, 800, 800)) | |
for i in data_loaders.val: | |
self.assertEqual(i.frame_type, ["unseen"]) | |
self.assertEqual(i.image_rgb.shape, (1, 3, 800, 800)) | |
for i in data_loaders.test: | |
self.assertEqual(i.frame_type, ["unseen"]) | |
self.assertEqual(i.image_rgb.shape, (1, 3, 800, 800)) | |
cameras = data_source.all_train_cameras | |
self.assertIsInstance(cameras, PerspectiveCameras) | |
self.assertEqual(len(cameras), 100) | |