GenSim / cliport /models /core /attention.py
LeroyWaa's picture
add gensim code
8fc2b4e
"""Attention module."""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import cliport.models as models
from cliport.utils import utils
class Attention(nn.Module):
"""Attention (a.k.a Pick) module."""
def __init__(self, stream_fcn, in_shape, n_rotations, preprocess, cfg, device):
super().__init__()
self.stream_fcn = stream_fcn
self.n_rotations = n_rotations
self.preprocess = preprocess
self.cfg = cfg
self.device = device
self.batchnorm = self.cfg['train']['batchnorm']
self.padding = np.zeros((3, 2), dtype=int)
max_dim = np.max(in_shape[:2])
pad = (max_dim - np.array(in_shape[:2])) / 2
self.padding[:2] = pad.reshape(2, 1) # left right top bown front back
in_shape = np.array(in_shape)
in_shape += np.sum(self.padding, axis=1)
in_shape = tuple(in_shape)
self.in_shape = in_shape
self.rotator = utils.ImageRotator(self.n_rotations)
self._build_nets()
def _build_nets(self):
stream_one_fcn, _ = self.stream_fcn
self.attn_stream = models.names[stream_one_fcn](self.in_shape, 1, self.cfg, self.device)
print(f"Attn FCN: {stream_one_fcn}")
def attend(self, x):
return self.attn_stream(x)
def forward(self, inp_img, softmax=True):
"""Forward pass."""
# print("in_img.shape", inp_img.shape)
in_data = np.pad(inp_img, self.padding, mode='constant')
in_shape = input_data.shape
if len(inp_shape) == 3:
inp_shape = (1,) + inp_shape
in_data = in_data.reshape(in_shape)
in_tens = torch.from_numpy(in_data.copy()).to(dtype=torch.float, device=self.device) # [B W H 6]
# Rotation pivot.
pv = np.array(in_data.shape[1:3]) // 2
# Rotate input.
in_tens = in_tens.permute(0, 3, 1, 2) # [B 6 W H]
in_tens = in_tens.repeat(self.n_rotations, 1, 1, 1)
in_tens = self.rotator(in_tens, pivot=pv)
# Forward pass.
logits = self.attend(torch.cat(in_tens, dim=0), lang_goal)
# Rotate back output.
logits = self.rotator(logits, reverse=True, pivot=pv)
logits = torch.cat(logits, dim=0)
c0 = self.padding[:2, 0]
c1 = c0 + inp_img.shape[:2]
logits = logits[:, :, c0[0]:c1[0], c0[1]:c1[1]]
logits = logits.permute(1, 2, 3, 0) # [B W H 1]
output = logits.reshape(len(logits), np.prod(logits.shape))
if softmax:
output = F.softmax(output, dim=-1)
output = output.reshape(logits.shape[1:])
return output