HumanSD / mmpose /codecs /utils /offset_heatmap.py
liyy201912's picture
Upload folder using huggingface_hub
cc0dd3c
# Copyright (c) OpenMMLab. All rights reserved.
from itertools import product
from typing import Tuple
import numpy as np
def generate_offset_heatmap(
heatmap_size: Tuple[int, int],
keypoints: np.ndarray,
keypoints_visible: np.ndarray,
radius_factor: float,
) -> Tuple[np.ndarray, np.ndarray]:
"""Generate offset heatmaps of keypoints, where each keypoint is
represented by 3 maps: one pixel-level class label map (1 for keypoint and
0 for non-keypoint) and 2 pixel-level offset maps for x and y directions
respectively.
Args:
heatmap_size (Tuple[int, int]): Heatmap size in [W, H]
keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D)
keypoints_visible (np.ndarray): Keypoint visibilities in shape
(N, K)
radius_factor (float): The radius factor of the binary label
map. The positive region is defined as the neighbor of the
keypoint with the radius :math:`r=radius_factor*max(W, H)`
Returns:
tuple:
- heatmap (np.ndarray): The generated heatmap in shape
(K*3, H, W) where [W, H] is the `heatmap_size`
- keypoint_weights (np.ndarray): The target weights in shape
(K,)
"""
N, K, _ = keypoints.shape
W, H = heatmap_size
heatmaps = np.zeros((K, 3, H, W), dtype=np.float32)
keypoint_weights = keypoints_visible.copy()
# xy grid
x = np.arange(0, W, 1)
y = np.arange(0, H, 1)[:, None]
# positive area radius in the classification map
radius = radius_factor * max(W, H)
for n, k in product(range(N), range(K)):
if keypoints_visible[n, k] < 0.5:
continue
mu = keypoints[n, k]
x_offset = (mu[0] - x) / radius
y_offset = (mu[1] - y) / radius
heatmaps[k, 0] = np.where(x_offset**2 + y_offset**2 <= 1, 1., 0.)
heatmaps[k, 1] = x_offset
heatmaps[k, 2] = y_offset
heatmaps = heatmaps.reshape(K * 3, H, W)
return heatmaps, keypoint_weights
def generate_displacement_heatmap(
heatmap_size: Tuple[int, int],
keypoints: np.ndarray,
keypoints_visible: np.ndarray,
roots: np.ndarray,
roots_visible: np.ndarray,
diagonal_lengths: np.ndarray,
radius: float,
):
"""Generate displacement heatmaps of keypoints, where each keypoint is
represented by 3 maps: one pixel-level class label map (1 for keypoint and
0 for non-keypoint) and 2 pixel-level offset maps for x and y directions
respectively.
Args:
heatmap_size (Tuple[int, int]): Heatmap size in [W, H]
keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D)
keypoints_visible (np.ndarray): Keypoint visibilities in shape
(N, K)
roots (np.ndarray): Coordinates of instance centers in shape (N, D).
The displacement fields of each instance will locate around its
center.
roots_visible (np.ndarray): Roots visibilities in shape (N,)
diagonal_lengths (np.ndarray): Diaginal length of the bounding boxes
of each instance in shape (N,)
radius (float): The radius factor of the binary label
map. The positive region is defined as the neighbor of the
keypoint with the radius :math:`r=radius_factor*max(W, H)`
Returns:
tuple:
- displacements (np.ndarray): The generated displacement map in
shape (K*2, H, W) where [W, H] is the `heatmap_size`
- displacement_weights (np.ndarray): The target weights in shape
(K*2, H, W)
"""
N, K, _ = keypoints.shape
W, H = heatmap_size
displacements = np.zeros((K * 2, H, W), dtype=np.float32)
displacement_weights = np.zeros((K * 2, H, W), dtype=np.float32)
instance_size_map = np.zeros((H, W), dtype=np.float32)
for n in range(N):
if (roots_visible[n] < 1 or (roots[n, 0] < 0 or roots[n, 1] < 0)
or (roots[n, 0] >= W or roots[n, 1] >= H)):
continue
diagonal_length = diagonal_lengths[n]
for k in range(K):
if keypoints_visible[n, k] < 1 or keypoints[n, k, 0] < 0 \
or keypoints[n, k, 1] < 0 or keypoints[n, k, 0] >= W \
or keypoints[n, k, 1] >= H:
continue
start_x = max(int(roots[n, 0] - radius), 0)
start_y = max(int(roots[n, 1] - radius), 0)
end_x = min(int(roots[n, 0] + radius), W)
end_y = min(int(roots[n, 1] + radius), H)
for x in range(start_x, end_x):
for y in range(start_y, end_y):
if displacements[2 * k, y,
x] != 0 or displacements[2 * k + 1, y,
x] != 0:
if diagonal_length > instance_size_map[y, x]:
# keep the gt displacement of smaller instance
continue
displacement_weights[2 * k:2 * k + 2, y,
x] = 1 / diagonal_length
displacements[2 * k:2 * k + 2, y,
x] = keypoints[n, k] - [x, y]
instance_size_map[y, x] = diagonal_length
return displacements, displacement_weights