File size: 1,436 Bytes
9d7ed27
bd16136
70cc79d
3723b18
bd16136
3723b18
174f0a6
bd16136
fd40918
bd16136
 
97814f0
 
 
 
 
 
3723b18
174f0a6
 
3723b18
174f0a6
3723b18
174f0a6
 
97814f0
174f0a6
97814f0
3723b18
174f0a6
 
 
 
 
 
 
 
 
70cc79d
174f0a6
 
 
 
97814f0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import os
os.system('pip install streamlit transformers torch')

import streamlit as st
from transformers import BartTokenizer, BartForConditionalGeneration

# Load the model and tokenizer
model_name = 'llmahmad/facebook_BART_summary'

tokenizer = BartTokenizer.from_pretrained(model_name)
model = BartForConditionalGeneration.from_pretrained(model_name)

def summarize_text(text):
    inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="longest")
    summary_ids = model.generate(inputs["input_ids"], max_length=150, min_length=30, do_sample=False)
    summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
    return summary

st.title("Text Summarization with Fine-Tuned Model")
st.write("Enter text to generate a summary using the fine-tuned summarization model.")

text = st.text_area("Input Text", height=200)
if st.button("Summarize"):
    if text:
        with st.spinner("Summarizing..."):
            summary = summarize_text(text)
            st.success("Summary Generated")
            st.write(summary)
    else:
        st.warning("Please enter some text to summarize.")

if __name__ == "__main__":
    st.set_option('deprecation.showfileUploaderEncoding', False)
    st.markdown(
        """
        <style>
        .reportview-container {
            flex-direction: row;
            justify-content: center.
        }
        </style>
        """,
        unsafe_allow_html=True
    )