File size: 2,792 Bytes
12392a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d7ed27
bd16136
70cc79d
3723b18
12392a6
3723b18
12392a6
 
97814f0
 
12392a6
 
3723b18
174f0a6
 
3723b18
174f0a6
3723b18
174f0a6
 
97814f0
174f0a6
97814f0
3723b18
174f0a6
 
c4f6d26
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# import os
# os.system('pip install streamlit transformers torch')

# import streamlit as st
# from transformers import BartTokenizer, BartForConditionalGeneration

# # Load the model and tokenizer
# model_name = 'facebook/bart-large-cnn'

# tokenizer = BartTokenizer.from_pretrained(model_name)
# model = BartForConditionalGeneration.from_pretrained(model_name)

# def summarize_text(text):
#     inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="longest")
#     summary_ids = model.generate(
#         inputs["input_ids"],
#         max_length=150,
#         min_length=30,
#         length_penalty=2.0,
#         num_beams=4,
#         early_stopping=True
#     )
#     summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
#     return summary

# st.title("Text Summarization with Fine-Tuned Model")
# st.write("Enter text to generate a summary using the fine-tuned summarization model.")

# text = st.text_area("Input Text", height=200)
# if st.button("Summarize"):
#     if text:
#         with st.spinner("Summarizing..."):
#             summary = summarize_text(text)
#             st.success("Summary Generated")
#             st.write(summary)
#     else:
#         st.warning("Please enter some text to summarize.")

# if __name__ == "__main__":
#     st.set_option('deprecation.showfileUploaderEncoding', False)
#     st.markdown(
#         """
#         <style>
#         .reportview-container {
#             flex-direction: row;
#             justify-content: center.
#         }
#         </style>
#         """,
#         unsafe_allow_html=True
#     )
import os
os.system('pip install streamlit transformers torch')

import streamlit as st
from transformers import pipeline

# Load the summarization pipeline
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")

def summarize_text(text):
    summary = summarizer(text, max_length=150, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True)
    return summary[0]['summary_text']

st.title("Text Summarization with Fine-Tuned Model")
st.write("Enter text to generate a summary using the fine-tuned summarization model.")

text = st.text_area("Input Text", height=200)
if st.button("Summarize"):
    if text:
        with st.spinner("Summarizing..."):
            summary = summarize_text(text)
            st.success("Summary Generated")
            st.write(summary)
    else:
        st.warning("Please enter some text to summarize.")

if __name__ == "__main__":
    st.set_option('deprecation.showfileUploaderEncoding', False)
    st.markdown(
        """
        <style>
        .reportview-container {
            flex-direction: row;
            justify-content: center.
        }
        </style>
        """,
        unsafe_allow_html=True
    )