Spaces:
Sleeping
Sleeping
File size: 6,533 Bytes
43b5bef c1e5d4c 518be16 c1e5d4c 0d6849e cc3006a 43b5bef cc3006a cf38aa5 43b5bef c1e5d4c 43b5bef c1e5d4c 518be16 c1e5d4c 518be16 77ac272 6733659 c9870b1 6733659 c9870b1 6733659 c9870b1 6733659 4766698 c9870b1 c1e5d4c c9870b1 6617dfe 4766698 c1e5d4c c9870b1 6617dfe 518be16 77ac272 c1e5d4c c9870b1 d82511d c1e5d4c c9870b1 c1e5d4c 57a76f2 28f1fca 57a76f2 0d6849e 57a76f2 73c4292 28f1fca 0d6849e 28f1fca 0d6849e f32ce56 327109c cc3006a 28f1fca f32ce56 327109c cc3006a 28f1fca f32ce56 327109c cc3006a 28f1fca cc3006a 28f1fca 57a76f2 43b5bef 57a76f2 0d6849e 57a76f2 0d6849e 57a76f2 0d6849e 57a76f2 0d6849e 57a76f2 0d6849e 57a76f2 0d6849e 57a76f2 43b5bef c1e5d4c cc3006a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import gradio as gr
import os
import requests
import threading
from datetime import datetime
from typing import List, Dict, Any, Generator
from session_manager import SessionManager
# Initialize session manager and get HF API key
session_manager = SessionManager()
HF_API_KEY = os.getenv("HF_API_KEY")
# Model endpoints configuration
MODEL_ENDPOINTS = {
"Qwen2.5-72B-Instruct": "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-72B-Instruct",
"Llama3.3-70B-Instruct": "https://api-inference.huggingface.co/models/meta-llama/Llama-3.3-70B-Instruct",
"Qwen2.5-Coder-32B-Instruct": "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B-Instruct",
}
def query_model(model_name: str, messages: List[Dict[str, str]]) -> str:
"""Query a single model with the chat history"""
endpoint = MODEL_ENDPOINTS[model_name]
headers = {
"Authorization": f"Bearer {HF_API_KEY}",
"Content-Type": "application/json"
}
# Build full conversation history for context
conversation = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
# Model-specific prompt formatting with full history
model_prompts = {
"Qwen2.5-72B-Instruct": (
f"<|im_start|>system\nCollaborate with other experts. Previous discussion:\n{conversation}<|im_end|>\n"
"<|im_start|>assistant\nMy analysis:"
),
"Llama3.3-70B-Instruct": (
"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n"
f"Build upon this discussion:\n{conversation}<|eot_id|>\n"
"<|start_header_id|>assistant<|end_header_id|>\nMy contribution:"
),
"Qwen2.5-Coder-32B-Instruct": (
f"<|im_start|>system\nTechnical discussion context:\n{conversation}<|im_end|>\n"
"<|im_start|>assistant\nTechnical perspective:"
)
}
# Model-specific stop sequences
stop_sequences = {
"Qwen2.5-72B-Instruct": ["<|im_end|>", "<|endoftext|>"],
"Llama3.3-70B-Instruct": ["<|eot_id|>", "\nuser:"],
"Qwen2.5-Coder-32B-Instruct": ["<|im_end|>", "<|endoftext|>"]
}
payload = {
"inputs": model_prompts[model_name],
"parameters": {
"max_tokens": 2048,
"temperature": 0.7,
"stop_sequences": stop_sequences[model_name],
"return_full_text": False
}
}
try:
response = requests.post(endpoint, json=payload, headers=headers)
response.raise_for_status()
result = response.json()[0]['generated_text']
# Clean up response formatting
result = result.split('<|')[0] # Remove any remaining special tokens
result = result.replace('**', '').replace('##', '') # Remove markdown
result = result.strip() # Remove leading/trailing whitespace
return result # Return complete response
except Exception as e:
return f"{model_name} error: {str(e)}"
def respond(message: str, history: List[List[str]], session_id: str) -> tuple[str, str]:
"""Handle sequential model responses with context preservation"""
# Load or initialize session
session = session_manager.load_session(session_id)
if not isinstance(session, dict) or "history" not in session:
session = {"history": []}
# Build context from session history
messages = []
for entry in session["history"]:
if entry["type"] == "user":
messages.append({"role": "user", "content": entry["content"]})
else:
messages.append({"role": "assistant", "content": f"{entry['model']}: {entry['content']}"})
# Add current message
messages.append({"role": "user", "content": message})
session["history"].append({
"timestamp": datetime.now().isoformat(),
"type": "user",
"content": message
})
responses = []
# Get first model's response
response1 = query_model("Qwen2.5-Coder-32B-Instruct", messages)
session["history"].append({
"timestamp": datetime.now().isoformat(),
"type": "assistant",
"model": "Qwen2.5-Coder-32B-Instruct",
"content": response1
})
messages.append({"role": "assistant", "content": f"Qwen2.5-Coder-32B-Instruct: {response1}"})
responses.append(f"**Qwen2.5-Coder-32B-Instruct**:\n{response1}")
# Get second model's response
response2 = query_model("Qwen2.5-72B-Instruct", messages)
session["history"].append({
"timestamp": datetime.now().isoformat(),
"type": "assistant",
"model": "Qwen2.5-72B-Instruct",
"content": response2
})
messages.append({"role": "assistant", "content": f"Qwen2.5-72B-Instruct: {response2}"})
responses.append(f"**Qwen2.5-72B-Instruct**:\n{response2}")
# Get final model's response
response3 = query_model("Llama3.3-70B-Instruct", messages)
session["history"].append({
"timestamp": datetime.now().isoformat(),
"type": "assistant",
"model": "Llama3.3-70B-Instruct",
"content": response3
})
messages.append({"role": "assistant", "content": f"Llama3.3-70B-Instruct: {response3}"})
responses.append(f"**Llama3.3-70B-Instruct**:\n{response3}")
# Save final session state
session_manager.save_session(session_id, session)
# Return response as a single tuple for Gradio chat
return message, "\n\n".join(responses)
# Create the Gradio interface
with gr.Blocks() as demo:
session_id = gr.State(session_manager.create_session)
gr.Markdown("## Multi-LLM Collaboration Chat")
gr.Markdown("A group chat with Qwen2.5-72B, Llama3.3-70B, and Qwen2.5-Coder-32B")
chatbot = gr.Chatbot()
msg = gr.Textbox(label="Message")
clear = gr.Button("Clear")
def user(message, history, session_id):
return "", history + [[message, None]]
def bot(history, session_id):
if history[-1][1] is None:
message = history[-1][0]
_, response = respond(message, history[:-1], session_id)
history[-1][1] = response
return history
return history
msg.submit(user, [msg, chatbot, session_id], [msg, chatbot]).then(
bot, [chatbot, session_id], [chatbot]
)
clear.click(lambda: (session_manager.create_session(), None, []),
None,
[session_id, msg, chatbot],
queue=False)
if __name__ == "__main__":
demo.launch(share=True)
|