File size: 6,533 Bytes
43b5bef
c1e5d4c
518be16
c1e5d4c
0d6849e
cc3006a
 
43b5bef
cc3006a
 
cf38aa5
43b5bef
c1e5d4c
43b5bef
 
 
 
 
 
c1e5d4c
 
 
518be16
 
c1e5d4c
518be16
77ac272
6733659
 
 
 
c9870b1
 
6733659
 
c9870b1
 
6733659
 
 
c9870b1
 
6733659
4766698
c9870b1
 
 
 
 
 
 
 
 
 
c1e5d4c
c9870b1
6617dfe
4766698
c1e5d4c
c9870b1
 
6617dfe
518be16
77ac272
c1e5d4c
 
 
c9870b1
 
 
 
 
d82511d
c1e5d4c
c9870b1
c1e5d4c
57a76f2
28f1fca
57a76f2
0d6849e
57a76f2
 
73c4292
28f1fca
 
 
 
 
 
 
 
 
 
0d6849e
 
 
 
 
28f1fca
 
0d6849e
f32ce56
327109c
cc3006a
 
 
 
 
 
28f1fca
 
f32ce56
 
327109c
cc3006a
 
 
 
 
 
28f1fca
 
f32ce56
 
327109c
cc3006a
 
 
 
 
 
28f1fca
 
 
 
cc3006a
28f1fca
57a76f2
 
43b5bef
57a76f2
 
0d6849e
 
57a76f2
 
0d6849e
57a76f2
 
 
0d6849e
57a76f2
 
0d6849e
57a76f2
 
 
 
 
 
 
0d6849e
57a76f2
 
0d6849e
57a76f2
 
 
 
 
43b5bef
c1e5d4c
cc3006a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import gradio as gr
import os
import requests
import threading
from datetime import datetime
from typing import List, Dict, Any, Generator
from session_manager import SessionManager

# Initialize session manager and get HF API key
session_manager = SessionManager()
HF_API_KEY = os.getenv("HF_API_KEY")

# Model endpoints configuration
MODEL_ENDPOINTS = {
    "Qwen2.5-72B-Instruct": "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-72B-Instruct",
    "Llama3.3-70B-Instruct": "https://api-inference.huggingface.co/models/meta-llama/Llama-3.3-70B-Instruct",
    "Qwen2.5-Coder-32B-Instruct": "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B-Instruct",
}

def query_model(model_name: str, messages: List[Dict[str, str]]) -> str:
    """Query a single model with the chat history"""
    endpoint = MODEL_ENDPOINTS[model_name]
    headers = {
        "Authorization": f"Bearer {HF_API_KEY}",
        "Content-Type": "application/json"
    }
    
    # Build full conversation history for context
    conversation = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
    
    # Model-specific prompt formatting with full history
    model_prompts = {
        "Qwen2.5-72B-Instruct": (
            f"<|im_start|>system\nCollaborate with other experts. Previous discussion:\n{conversation}<|im_end|>\n"
            "<|im_start|>assistant\nMy analysis:"
        ),
        "Llama3.3-70B-Instruct": (
            "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n"
            f"Build upon this discussion:\n{conversation}<|eot_id|>\n"
            "<|start_header_id|>assistant<|end_header_id|>\nMy contribution:"
        ),
        "Qwen2.5-Coder-32B-Instruct": (
            f"<|im_start|>system\nTechnical discussion context:\n{conversation}<|im_end|>\n"
            "<|im_start|>assistant\nTechnical perspective:"
        )
    }

    # Model-specific stop sequences
    stop_sequences = {
        "Qwen2.5-72B-Instruct": ["<|im_end|>", "<|endoftext|>"],
        "Llama3.3-70B-Instruct": ["<|eot_id|>", "\nuser:"],
        "Qwen2.5-Coder-32B-Instruct": ["<|im_end|>", "<|endoftext|>"]
    }

    payload = {
        "inputs": model_prompts[model_name],
        "parameters": {
            "max_tokens": 2048,
            "temperature": 0.7,
            "stop_sequences": stop_sequences[model_name],
            "return_full_text": False
        }
    }
    
    try:
        response = requests.post(endpoint, json=payload, headers=headers)
        response.raise_for_status()
        result = response.json()[0]['generated_text']
        # Clean up response formatting
        result = result.split('<|')[0]  # Remove any remaining special tokens
        result = result.replace('**', '').replace('##', '')  # Remove markdown
        result = result.strip()  # Remove leading/trailing whitespace
        return result  # Return complete response
    except Exception as e:
        return f"{model_name} error: {str(e)}"

def respond(message: str, history: List[List[str]], session_id: str) -> tuple[str, str]:
    """Handle sequential model responses with context preservation"""
    # Load or initialize session
    session = session_manager.load_session(session_id)
    if not isinstance(session, dict) or "history" not in session:
        session = {"history": []}
    
    # Build context from session history
    messages = []
    for entry in session["history"]:
        if entry["type"] == "user":
            messages.append({"role": "user", "content": entry["content"]})
        else:
            messages.append({"role": "assistant", "content": f"{entry['model']}: {entry['content']}"})
    
    # Add current message
    messages.append({"role": "user", "content": message})
    session["history"].append({
        "timestamp": datetime.now().isoformat(),
        "type": "user",
        "content": message
    })
    
    responses = []
    
    # Get first model's response
    response1 = query_model("Qwen2.5-Coder-32B-Instruct", messages)
    session["history"].append({
        "timestamp": datetime.now().isoformat(),
        "type": "assistant",
        "model": "Qwen2.5-Coder-32B-Instruct",
        "content": response1
    })
    messages.append({"role": "assistant", "content": f"Qwen2.5-Coder-32B-Instruct: {response1}"})
    responses.append(f"**Qwen2.5-Coder-32B-Instruct**:\n{response1}")
    
    # Get second model's response
    response2 = query_model("Qwen2.5-72B-Instruct", messages)
    session["history"].append({
        "timestamp": datetime.now().isoformat(),
        "type": "assistant",
        "model": "Qwen2.5-72B-Instruct",
        "content": response2
    })
    messages.append({"role": "assistant", "content": f"Qwen2.5-72B-Instruct: {response2}"})
    responses.append(f"**Qwen2.5-72B-Instruct**:\n{response2}")
    
    # Get final model's response
    response3 = query_model("Llama3.3-70B-Instruct", messages)
    session["history"].append({
        "timestamp": datetime.now().isoformat(),
        "type": "assistant",
        "model": "Llama3.3-70B-Instruct",
        "content": response3
    })
    messages.append({"role": "assistant", "content": f"Llama3.3-70B-Instruct: {response3}"})
    responses.append(f"**Llama3.3-70B-Instruct**:\n{response3}")
    
    # Save final session state
    session_manager.save_session(session_id, session)
    
    # Return response as a single tuple for Gradio chat
    return message, "\n\n".join(responses)

# Create the Gradio interface
with gr.Blocks() as demo:
    session_id = gr.State(session_manager.create_session)
    
    gr.Markdown("## Multi-LLM Collaboration Chat")
    gr.Markdown("A group chat with Qwen2.5-72B, Llama3.3-70B, and Qwen2.5-Coder-32B")
    
    chatbot = gr.Chatbot()
    msg = gr.Textbox(label="Message")
    clear = gr.Button("Clear")
    
    def user(message, history, session_id):
        return "", history + [[message, None]]
    
    def bot(history, session_id):
        if history[-1][1] is None:
            message = history[-1][0]
            _, response = respond(message, history[:-1], session_id)
            history[-1][1] = response
            return history
        return history
    
    msg.submit(user, [msg, chatbot, session_id], [msg, chatbot]).then(
        bot, [chatbot, session_id], [chatbot]
    )
    
    clear.click(lambda: (session_manager.create_session(), None, []), 
                None, 
                [session_id, msg, chatbot],
                queue=False)

if __name__ == "__main__":
    demo.launch(share=True)